Skip navigation
GCRIS
  • Home
  • Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Reports
  • Explore by
    • Collections
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Sign on to:
    • My GCRIS Repository
    • Receive email
      updates
    • Edit Account details
Network Lab Bibliometrics Email Alert
 Claim profile

  • Profile
  • Indicators
  • Other

Profile

Picture
Emrah Kılıç.jpg picture
Full Name
Kılıç, Emrah
Variants
Kilic, E.
Kiliç, E. M.R.A.H.
Kiliç, E.
Kılıç, E
Kılıç, E.
Emrah Kılıç
 
Main Affiliation
07.03. Department of Mathematics
 
Personal Site
Personal Web Site
 
Email
ekilic@etu.edu.tr
 
Link to YOK Profile
Link to YOK Profile
ORCID
0000-0003-0722-7382
Link to Google Profile
Google Scholar Profile
Scopus Author ID
15757727500
Researcher ID
R-1717-2019
 
Biography
http://ekilic.etu.edu.tr/cv.htm
Country
Turkey
Status
Current Staff
Loading... 5 0 20 0 false
Loading... 6 0 20 0 false

Publications
(Articles)

Author

  • 124 Kılıç, Emrah
  • 26 Prodinger, Helmut
  • 22 Ömür, Neşe
  • 18 Kılıç, E.
  • 13 Arıkan, Talha
  • 12 Taşcı, Dursun
  • 12 Ulutaş, Yücel Türker
  • 11 Akkuş, İlker
  • 7 Chu, Wenchang
  • 7 Koparal, Sibel
  • . next >

Subject

  • 17 determinant
  • 14 LU-decomposition
  • 12 Determinant
  • 10 Fibonacci numbers
  • 10 Fibonomial coefficients
  • 9 Filbert matrix
  • 8 Gaussian q-binomial coefficients
  • 6 [No Keywords]
  • 6 Fibonacci and Lucas numbers
  • 6 inverse matrix
  • . next >

Date issued

  • 31 2020 - 2026
  • 90 2010 - 2019
  • 25 2000 - 2009

Type

  • 146 Article
  • 1 Article; Early Access

Fulltext

  • 117 No Fulltext
  • 29 With Fulltext


Results 81-100 of 146 (Search time: 0.003 seconds).

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
Issue DateTitleAuthor(s)
812019New Binomial Double Sums With Products Op Fibonacci and Lucas NumbersKılıç, Emrah ; Taşdemir, Funda
82Apr-2020New Filbert and Lilbert Matrices With Asymmetric EntriesBozdağ, Hacer; Kılıç, Emrah ; Akkuş, İlker
832019New Reciprocal Sums Involving Finite Products of Second Order RecursionsKılıç, Emrah ; Ersanlı, Didem
84Jul-2014New Sums Identities in Weighted Catalan Triangle With the Powers of Generalized Fibonacci and Lucas NumbersKılıç, Emrah ; Yalçıner, Aynur
852021A New Type of Sylvester–kac Matrix and Its SpectrumKılıç, Emrah ; da Fonseca, C. M.
86Jan-2019A Nonlinear Generalization of the Filbert Matrix and Its Lucas AnalogueKılıç, Emrah ; Arıkan, Talha
872020Nonlinear Variants of the Generalized Filbert and Lilbert MatricesKılıç, Emrah ; Koparal, Sibel; Ömür, Neşe
88Aug-2019A Nonsymmetrical Matrix and Its FactorizationsArıkan, Talha; Kılıç, Emrah ; Prodinger, Helmut
89Feb-2014A Note on the Conjecture of Ramirez and SirventKılıç, Emrah ; Prodinger, Helmut
90Mar-2020An Observation on the Determinant of a Sylvester-Kac Type Matrixda Fonseca, Carlos M.; Kılıç, Emrah 
912008On a Constant-Diagonals MatrixKılıç, Emrah 
922017On Alternating Weighted Binomıal Sums With Falling FactorıalsKılıç, Emrah ; Ömür, Neşe; Koparal, Sibel
93Apr-2019On Binomial Double Sums With Fibonacci and Lucas Numbers-IKılıç, Emrah ; Taşdemir, Funda
94Apr-2019On Binomial Double Sums With Fibonacci and Lucas Numbers-IiKılıç, Emrah ; Taşdemir, Funda
952008On Families of Bipartite Graphs Associated With Sums of Fibonacci and Lucas NumbersKılıç, Emrah ; Taşcı, Dursun
962010On Families of Bipartite Graphs Associated With Sums of Generalized Order-K Fibonacci and Lucas NumbersKılıç, Emrah ; Taşcı, Dursun
972018On Fibonomial Sums Identities With Special Sign Functions: Analytically Q-Calculus ApproachKılıç, Emrah ; Akkuş, İlker
982008On Sums of Second Order Linear Recurrences by Hessenberg MatricesKılıç, E. ; Taşcı, Dursun
99Sep-2016On Sums of Squares of Fibonomial Coefficients by Q-CalculusKılıç, Emrah ; Yalçıner, Aynur
1002009On the Fibonacci and Lucas P-Numbers, Their Sums, Families of Bipartite Graphs and Permanents of Certain MatricesKılıç, E. ; Stakhov, A. P.
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

 

Claim Researcher Page

Check the encrypted string of this email, put the correct string in the box below and click "Go" to validate the email and claim this profile.

Emails: e k i l * * @ * * * * * * u . t r

Go


Login via ORCID to claim this profile:


Contact via feedback form

If you want contact administrator site clicking the follow button 

Explore by

  • Collections
  • Publications
  • Researchers
  • Patents
  • Organizations
  • Projects
  • Journals


  • Events
  • Equipments
  • Awards
  • Reports
  • Language
  • Rights
  • Category

About

  • Contact
  • GCRIS
  • Research Ecosystems
  • Feedback
Feedback
Powered by Research Ecosystems
Login to GCRIS Dashboard