Skip navigation
GCRIS
  • Home
  • Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Reports
  • Explore by
    • Collections
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Sign on to:
    • My GCRIS Repository
    • Receive email
      updates
    • Edit Account details
Network Lab Bibliometrics Email Alert
 Claim profile

  • Profile
  • Indicators
  • Other

Profile

Picture
Emrah Kılıç.jpg picture
Full Name
Kılıç, Emrah
Variants
Kilic, E.
Kiliç, E. M.R.A.H.
Kiliç, E.
Kılıç, E
Kılıç, E.
Emrah Kılıç
 
Main Affiliation
07.03. Department of Mathematics
 
Personal Site
Personal Web Site
 
Email
ekilic@etu.edu.tr
 
Link to YOK Profile
Link to YOK Profile
ORCID
0000-0003-0722-7382
Link to Google Profile
Google Scholar Profile
Scopus Author ID
15757727500
Researcher ID
R-1717-2019
 
Biography
http://ekilic.etu.edu.tr/cv.htm
Country
Turkey
Status
Current Staff
Loading... 5 0 20 0 false
Loading... 6 0 20 0 false

Publications
(Articles)

Author

  • 124 Kılıç, Emrah
  • 26 Prodinger, Helmut
  • 22 Ömür, Neşe
  • 18 Kılıç, E.
  • 13 Arıkan, Talha
  • 12 Taşcı, Dursun
  • 12 Ulutaş, Yücel Türker
  • 11 Akkuş, İlker
  • 7 Chu, Wenchang
  • 7 Koparal, Sibel
  • . next >

Subject

  • 17 determinant
  • 14 LU-decomposition
  • 12 Determinant
  • 10 Fibonacci numbers
  • 10 Fibonomial coefficients
  • 9 Filbert matrix
  • 8 Gaussian q-binomial coefficients
  • 6 [No Keywords]
  • 6 Fibonacci and Lucas numbers
  • 6 inverse matrix
  • . next >

Date issued

  • 31 2020 - 2026
  • 90 2010 - 2019
  • 25 2000 - 2009

Type

  • 146 Article
  • 1 Article; Early Access

Fulltext

  • 117 No Fulltext
  • 29 With Fulltext


Results 61-80 of 146 (Search time: 0.009 seconds).

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
Issue DateTitleAuthor(s)
61Sep-2017Generalized double binomial sums families by generating functionsKılıç, Emrah ; Belbachir, Hacene
622009Generating Matrices for Weighted Sums of Second Order Linear RecurrencesKılıç, Emrah ; Stanica, Pantelimon
632023Harmony of Asymmetric Variants of the Filbert and Lilbert Matrices in Q-FormKılıç, E. ; Erşanlı, D.
642016Identities With Squares of Binomial Coefficients: an Elementary and Explicit ApproachKılıç, Emrah ; Prodinger, Helmut
65Aug-2020The Interesting Spectral Interlacing Property for a Certain Tridiagonal Matrixda Fonseca, Carlos M.; Kılıç, Emrah ; Pereira, Antonio
662013The Inverse of Banded MatricesKılıç, Emrah ; Stanica, Pantelimon
672024Inverses and Determinants of Three Classes of Hankel MatricesChu, Wenchang; Kılıç, Emrah 
682024Left and Right Eigenvectors of a Variant of the Sylvester-Kac MatrixWenchang,C.H.U.; Kılıç, Emrah 
692010The Lehmer Matrix and Its Recursive AnalogueKılıç, E. ; Stanic, P.
702011A Matrix Approach for General Higher Order Linear RecurrencesKılıç, Emrah ; Stanica, Pantelimon
712012A Matrix Approach for Generalizing Two Curious Divisibility PropertiesKılıç, Emrah 
72Feb-2020A Matrix Approach To Some Second-Order Difference Equations With Sign-Alternating CoefficientsAndelic, Milica; Du, Zhibin; da Fonseca, Carlos M.; Kılıç, Emrah 
732017The Matrix of Super Patalan Numbers and Its FactorizationsKılıç, Emrah ; Prodinger, Helmut
742009Matrix Representation of the Second Order Recurrence {u(kn)}Kılıç, Emrah ; Ömür, Nese; Ulutaş, Yücel Türker
752009More General Identities Involving the Terms of {w-N(a,b;p,q)}Kılıç, Emrah ; Tan, Elif
762013More on the Infinite Sum of Reciprocal Fibonacci, Pell and Higher Order RecurrencesKılıç, Emrah ; Arıkan, Talha
772010Negatively Subscripted Fibonacci and Lucas Numbers and Their Complex FactorizationsKılıç, E. ; Taşcı, Dursun
782-Apr-2020New Analogues of the Filbert and Lilbert Matrices Via Products of Two K-Tuples Asymmetric EntriesKılıç, Emrah ; Ömür, Neşe; Koparal, Sibel
79Jun-2019New Asymmetric Generalizations of the Filbert and Lilbert MatricesKılıç, Emrah ; Koparal, Sibel; Ömür, Neşe
802019New Binomial Double Sums With Products of Fibonacci and Lucas NumbersKılıç, Emrah ; Taşdemir, Funda
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

 

Claim Researcher Page

Check the encrypted string of this email, put the correct string in the box below and click "Go" to validate the email and claim this profile.

Emails: e k i l * * @ * * * * * * u . t r

Go


Login via ORCID to claim this profile:


Contact via feedback form

If you want contact administrator site clicking the follow button 

Explore by

  • Collections
  • Publications
  • Researchers
  • Patents
  • Organizations
  • Projects
  • Journals


  • Events
  • Equipments
  • Awards
  • Reports
  • Language
  • Rights
  • Category

About

  • Contact
  • GCRIS
  • Research Ecosystems
  • Feedback
Feedback
Powered by Research Ecosystems
Login to GCRIS Dashboard