Skip navigation
GCRIS
  • Home
  • Collections
  • Research Outputs
  • Researchers
  • Organizations
  • Projects
  • Reports
  • Explore by
    • Collections
    • Research Outputs
    • Researchers
    • Organizations
    • Projects
  • Sign on to:
    • My GCRIS Repository
    • Receive email
      updates
    • Edit Account details
Network Lab Bibliometrics Email Alert
 Claim profile

  • Profile
  • Indicators
  • Other

Profile

Picture
Emrah Kılıç.jpg picture
Full Name
Kılıç, Emrah
Variants
Kilic, E.
Kiliç, E. M.R.A.H.
Kiliç, E.
Kılıç, E
Kılıç, E.
Emrah Kılıç
 
Main Affiliation
07.03. Department of Mathematics
 
Personal Site
Personal Web Site
 
Email
ekilic@etu.edu.tr
 
Link to YOK Profile
Link to YOK Profile
ORCID
0000-0003-0722-7382
Link to Google Profile
Google Scholar Profile
Scopus Author ID
15757727500
Researcher ID
R-1717-2019
 
Biography
http://ekilic.etu.edu.tr/cv.htm
Country
Turkey
Status
Current Staff
Loading... 5 0 20 0 false
Loading... 6 0 20 0 false

Publications
(Articles)

Author

  • 124 Kılıç, Emrah
  • 26 Prodinger, Helmut
  • 22 Ömür, Neşe
  • 18 Kılıç, E.
  • 13 Arıkan, Talha
  • 12 Taşcı, Dursun
  • 12 Ulutaş, Yücel Türker
  • 11 Akkuş, İlker
  • 7 Chu, Wenchang
  • 7 Koparal, Sibel
  • . next >

Subject

  • 17 determinant
  • 14 LU-decomposition
  • 12 Determinant
  • 10 Fibonacci numbers
  • 10 Fibonomial coefficients
  • 9 Filbert matrix
  • 8 Gaussian q-binomial coefficients
  • 6 [No Keywords]
  • 6 Fibonacci and Lucas numbers
  • 6 inverse matrix
  • . next >

Date issued

  • 31 2020 - 2025
  • 90 2010 - 2019
  • 25 2000 - 2009

Type

  • 146 Article
  • 1 Article; Early Access

Fulltext

  • 117 No Fulltext
  • 29 With Fulltext


Results 1-20 of 146 (Search time: 0.003 seconds).

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
Issue DateTitleAuthor(s)
12011Alternating Sums of the Powers of Fibonacci and Lucas NumbersKılıç, Emrah ; Ömür, Neşe; Ulutaş, Yücel Türker
22018An Analytical Approach: Explicit Inverses of Periodic Tridiagonal MatricesHopkins, Tim; Kılıç, Emrah 
32022Analytically Explicit Inverse of a Kind of Periodic Tridiagonal Matrix Using a Backward Continued Fraction ApproachHopkins, T.; Kiliç, E. 
42014Asymmetric Generalizations of the Filbert Matrix and VariantsKılıç, Emrah ; Prodinger, Helmut
52008The Binet Formula, Sums and Representations of Generalized Fibonacci P-NumbersKılıç, Emrah 
62011Binomial Identities Involving the Generalized Fibonacci Type PolynomialsKılıç, Emrah ; Irmak, Nurettin
72021Binomial Sums Involving Catalan NumbersChu, Wenchang; Kılıç, Emrah 
82024Binomial Sums Involving Second-Order Linearly Recurrent SequencesCampbell, J.M.; Kiliç, E. 
92024Binomial Sums Involving Second-Order Linearly Recurrent SequencesCampbell, John m.; Kılıç, Emrah 
102011Binomial Sums Whose Coeffıcients Are Products Of Terms Of Binary SequencesKılıç, Emrah ; Ömür, Neşe; Ulutaş, Yücel Türker
112010Certain Binomial Sums With Recursive CoefficientsKılıç, E. ; Ionascu, E. J.
122017A Class of Non-Symmetric Band Determinants With the Gaussian Q-BinomialcoefficientsArıkan, Talha; Kılıç, Emrah 
132021A Class of Symmetric and Non-Symmetric Band Matrices Via Binomial CoefficientsMicheal, O.; Kılıç, E. 
142017Closed Form Evaluation of Melham's Reciprocal SumsKılıç, Emrah ; Prodinger, Helmut
152016Closed Form Evaluation of Restricted Sums Containing Squares of Fibonomial CoefficientsKılıç, Emrah ; Prodinger, Helmut
16Jun-2016Closed Form Evaluation of Sums Containing Squares of Fibonomial CoefficientsKılıç, Emrah ; Prodinger, Helmut
172008A Computational Algorithm for Special Nth-Order Pentadiagonal Toeplitz DeterminantsKılıç, Emrah ; El-Mikkawy, Moawwad
182010Conics Characterizing the Generalized Fibonacci and Lucas Sequences With Indices in Arithmetic ProgressionsKılıç, Emrah ; Ömür, Neşe
192019Cubic Sums of Q-Binomial Coefficients and the Fibonomial CoefficientsChu, Wenchang; Kılıç, Emrah 
202024Curious Harmony in Asymmetric & Nonlinear Variant of Filbert and Lilbert MatricesKılıç, Emrah ; Ersanlı, Didem
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

 

Claim Researcher Page

Check the encrypted string of this email, put the correct string in the box below and click "Go" to validate the email and claim this profile.

Emails: e k i l * * @ * * * * * * u . t r

Go


Login via ORCID to claim this profile:


Contact via feedback form

If you want contact administrator site clicking the follow button 

Explore by

  • Collections
  • Publications
  • Researchers
  • Patents
  • Organizations
  • Projects
  • Journals


  • Events
  • Equipments
  • Awards
  • Reports
  • Language
  • Rights
  • Category

About

  • Contact
  • GCRIS
  • Research Ecosystems
  • Feedback
Feedback
Powered by Research Ecosystems
Login to GCRIS Dashboard