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In this article we present the first results on domain decomposition methods for nonlocal
operators. We present a nonlocal variational formulation for these operators and establish
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inequality. To determine the conditioning of the discretized operator, we prove a spectral
equivalence which leads to a mesh size independent upper bound for the condition
number of the stiffness matrix. We then introduce a nonlocal two-domain variational
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single-domain formulation. A nonlocal Schur complement is introduced. We establish
condition number bounds for the nonlocal stiffness and Schur complement matrices.
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and two-domain problems are presented.
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1. Introduction

Domain decomposition methods where the subdomains do not overlap are called substructuring methods, reflecting their
origins and long use within the structural analysis community [1]. These methods solve for unknowns only along the inter-
face between subdomains, thus decoupling these domains from each other and allowing each subdomain to then be solved
independently. One may solve for the primal field variable on the interface, generating a Dirichlet boundary value problem
on each subdomain (these are Schur complement methods, see [2] and references cited therein), or solve for the dual field
variable on the interface, generating a Neumann boundary value problem on each subdomain (these are dual Schur comple-
ment methods, see [3–6]). Hybrid dual-primal methods have also been developed [7].

As domain decomposition methods are frequently employed on massively parallel computers, only scalable methods are
of interest, meaning that the condition number of the interface problem does not grow (or, only grows weakly) with the
number of subdomains. Scalable or weakly scalable methods are generated by application of an appropriate preconditioner
to the interface problem. This preconditioner requires the solution of a coarse problem to propagate error globally; see any of
the Refs. [8–15]. For a general overview of domain decomposition, the reader is directed to the excellent texts [2,16,17].

All of the methods referenced above have in common that they are domain decomposition approaches for local problems.
In this article, we propose and study a domain decomposition method for the nonlocal Dirichlet boundary value problem
LðuÞ ¼ bðxÞ; x 2 X; ð1:1Þ
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where
LðuÞ :¼ �
Z

X[BX
Cðx;x0Þ½uðx0Þ � uðxÞ�dx0: ð1:2Þ
Let n and d denote the dimensions of the function space and the spatial domain, respectively. X � Rd is a bounded domain,
BX is given in (2.1), b is given, and uðxÞ 2 Rn is prescribed for x 2 Rd nX. We prescribe the value of u(x) outside X and not
just on the boundary of X, owing to the nonlocal nature of the problem.

Nonlocal models are useful where classical (local) models cease to be predictive. Examples include porous media flow
[18–20], turbulence [21], fracture of solids, stress fields at dislocation cores and cracks tips, singularities present at the point
of application of concentrated loads (forces, couples, heat, etc.), failure in the prediction of short wavelength behavior of elas-
tic waves, microscale heat transfer, and fluid flow in microscale channels [22]. These are also cases where microscale fields
are nonsmooth. Consequently, nonlocal models are also useful for multiscale modeling. Recent examples of nonlocal multi-
scale modeling include the upscaling of molecular dynamics to nonlocal continuum mechanics [23], and development of a
rigorous multiscale method for the analysis of fiber-reinforced composites capable of resolving dynamics at structural length
scales as well as the length scales of the reinforcing fibers [24]. Progress towards a nonlocal calculus is reported in [25].
Development and analysis of a nonlocal diffusion equation is reported in [26–28]. Theoretical developments for general class
of integro-differential equation related to the fractional Laplacian are presented in [29–31]. Mathematical and numerical
analysis for linear nonlocal peridynamic boundary problems appears in [32,33]. We discuss in Section 2 some specific con-
texts where the nonlocal operator L appears, and the assumptions placed upon L by those interpretations.

To the best of authors’ knowledge, this article represents the first work on domain decomposition methods for nonlocal
models. Our aim is to generalize iterative substructuring methods to a nonlocal setting and characterize the impact of non-
locality upon the scalability of these methods. To begin our analysis, we first develop a weak form for (1.1) in Section 3. The
main theoretical construction for conditioning is in Section 4. We establish spectral equivalences to bound the condition
numbers of the stiffness and Schur complement matrices. For that, we prove a nonlocal Poincaré inequality for the lower
bound and a dimension dependent estimate for the upper bound. This leads to the novel result that the condition number
of the discrete nonlocal operator can be bounded independently of the mesh size. In Section 5, we construct a suitable nonlocal
domain decomposition framework with special attention to transmission conditions. Then, we prove the equivalence of the
boundary value problems corresponding to the single domain and the two-domain decomposition. In Section 6, we first de-
fine a discrete energy minimizing extension, a nonlocal analog of discrete harmonic extension in the local case, to study the
conditioning of the Schur complement in the nonlocal setting. We discretize our two-domain weak form to arrive at a non-
local Schur complement. We perform numerical studies to validate our theoretical results. Finally in Section 7, we draw con-
clusions about conditioning and suggest future research directions for nonlocal domain decomposition methods.

2. Interpretations of the operator L

The operator L appears in many different application areas, from evolution equations for species population densities [34]
to image processing [35]. We review two specific contexts in which the operator L of (1.1) is utilized, paying special atten-
tion to associated assumptions these interpretations place upon C in L. In all cases, we find C to have local support about x,
meaning that we must prescribe Dirichlet boundary conditions only for
BX :¼ suppðCÞ nX; ð2:1Þ
as depicted in Fig. 2.1. Furthermore, throughout this article we assume an integrable C.

2.1. Nonlocal diffusion processes

The equation
utðx; tÞ ¼ Lðuðx; tÞÞ ð2:2Þ
Fig. 2.1. Typical domain for (1.1). u is prescribed in BX, and we solve for u in X.
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is an instance of a nonlocal p-Laplace equation for p = 2, and has been used to model nonlocal diffusion processes, see [36,28]
and the references cited therein. In this setting, uðx; tÞ 2 R is the density at the point x at time t of some material, and we
assume C(x,x0) = C(x � x0) is translation invariant. Then,

R
Rd Cðx0 � xÞuðx0; tÞdx0 is the rate at which material is arriving at x

from all other points in supp(C), and �
R

Rd Cðx0 � xÞuðx; tÞdx0 is the rate at which material departs x for all other points in
supp(C) [37,28].

In this interpretation of (1.1) the following restrictions are placed upon C in L. It is assumed that C : Rd ! R is a nonneg-
ative, radial, continuous function that is strictly positive in a ball of radius d about x and zero elsewhere. Additionally, it is
assumed that

R
X CðnÞdn <1.

2.2. Nonlocal solid mechanics

The equation
uttðx; tÞ ¼ Lðuðx; tÞÞ þ bðxÞ ð2:3Þ
is the linearized peridynamic equation [38, Eq. (56)]. The corresponding time-independent (‘‘peristatic’’) equilibrium equa-
tion is (1.1). Peridynamics is a nonlocal reformulation of continuum mechanics that is oriented toward deformations with
discontinuities, see [38–40] and the references therein. In this context, u 2 Rn is the displacement field for the body X,
and C(x,x0) is a stiffness tensor, also known as a micromodulus tensor.

In this interpretation of (1.1) the following restrictions are placed upon C in L. It is assumed that C is integrable and
strictly positive definite in the neighborhood of x; Hx, defined as
Hx :¼ x0 2 Rd : kx0 � xk 6 d
� �

; ð2:4Þ
where d > 0 is called the horizon. These assumptions are made because they are sufficient to ensure material stability [38, pp.
191–194]. It is also assumed that C = 0 for kx0 � xk > d. If the material is elastic, it follows that C(x,x0) is symmetric (e.g.,
C(x,x0)T = C(x,x0)). Further, it is assumed that C is symmetric with respect to its arguments (e.g., C(x,x0) = C(x0,x)). This follows
from imposing that the integrand of (1.2) must be anti-symmetric in its arguments, e.g.,
Cðx;x0Þ½uðx0Þ � uðxÞ� ¼ �Cðx0;xÞ½uðxÞ � uðx0Þ�
in accordance with Newton’s third law.

3. A nonlocal variational formulation

Here we present a variational formulation of the nonlocal Eq. (1.1). For peridynamics, this was presented by Emmerich
and Weckner in [41]. An analogous expression also appears in [38, Eq. (75)], as well as [25].

Our construction takes place on the domain under consideration and its nonlocal boundary, i.e., X [ BX. We define the
nonlocal closure of X as follows:
X :¼ X [ BX:
We will utilize the function space
V :¼ Ln
2;0 X
� �

¼ v 2 Ln
2 X
� �

: vjBX ¼ 0
n o

ð3:1Þ
and the inner product
ðu;vÞ :¼
Z

X
uvdx:
The weak formulation of (1.1) is the following: Given bðxÞ 2 Ln
2ðXÞ, find u(x) 2 V such that
aðu;vÞ ¼ ðb;vÞ 8v 2 V ; ð3:2Þ
where
aðu;vÞ :¼ �
Z

X

Z
X

Cðx; x0Þ½uðx0Þ � uðxÞ�dx0
� �

vðxÞdx: ð3:3Þ
We assume that the iterated integral in (3.3) is finite:
�
Z

X

Z
X

Cðx; x0Þ½uðx0Þ � uðxÞ�dx0
� �

vðxÞdx <1
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and that C(x,x0) [u(x0) � u(x)] is anti-symmetric in its arguments. Combining these observations with Fubini’s Theorem gives
the identity
Fig. 3.1
BX. The
�
Z

X

Z
X

Cðx; x0Þ½uðx0Þ � uðxÞ�dx0
� �

vðxÞdx ¼ 1
2

Z
X

Z
X

Cðx; x0Þ½uðx0Þ � uðxÞ�½vðx0Þ � vðxÞ�dx0
� �

dx: ð3:4Þ
For the proof of well-posedness of the nonlocal BVP (3.2), we utilize the equivalent expression in (3.4) which induces the
following bilinear form:
aðu;vÞ ¼ 1
2

Z
X

Z
X

Cðx;x0Þ½uðx0Þ � uðxÞ�½vðx0Þ � vðxÞ�dx0 dx: ð3:5Þ
In Section 4.1, we will establish the coercivity of a(u,u) in V in the case of scalar functions, i.e., by setting n = 1 in (3.1). The

continuity of a(u,v) in L2 X
� �

follows from (4.22). Furthermore, R(v) :¼ (b,v) is a bounded linear functional on L2 X
� �

. There-

fore, well-posedness of (3.2) follows from the Lax–Milgram Lemma; also see [25, Section 6].
In 1D with X :¼ ½�d;1þ d�, the weak form (3.5) becomes
aðu;uÞ ¼ 1
2

Z
½�d;1þd�

Z
½x�d;xþd�\½�d;1þd�

Cðx; x0Þ uðx0Þ � uðxÞð Þ2dx0 dx; ð3:6Þ
where the limits of integration have been adjusted to account for the support of C(x,x0), which is assumed to vanish if
kx � x0k > d. For this problem, the two-dimensional domain of integration is the parallelogram shown in Fig. 3.1. For 2D
and 3D problems, the domains of integration are four and six dimensional, respectively.

4. Nonlocal spectral equivalence

The principle result of this section is Theorem 1, a condition number bound for the stiffness matrix arising from a finite
element discretization of (3.3). We investigate the conditioning because it determines both the accuracy of the computed
numerical solution, as well as the computational effort required by an iterative linear solver to produce the numerical solu-
tion. Quantifying the condition number bound is a necessary first step towards developing scalable preconditioners and opti-
mal solvers for nonlocal models.

In the local setting, the classical condition number estimates rely on a Poincaré inequality and an inverse inequality for
the lower and upper bound, respectively. Similarly to the local case, we develop a nonlocal Poincaré inequality to be used in
the lower bound. We prove a nonlocal Poincaré inequality which is used to establish the coercivity of the underlying bilinear
form. However, for condition number analysis, one needs a more refined Poincaré inequality which involves an explicit
d-quantification. Such refined inequality requires substantially more involved analysis, which has been accomplished by
the first author in the companion article [42].

The d-quantification is an essential feature in the nonlocal setting because the lower bound turns out to be dimension
dependent, unlike in the local case. This dimensional dependence is induced by the neighborhood Hx (see (2.4)), which is
. Domain of integration for a 1D problem where X = [0,1] and BX ¼ ½�d;0� [ ½1;1þ d�. A nonlocal Dirichlet boundary condition is prescribed over
grey region indicates the portion of the integration domain where either or both of x, x0 lie outside X.
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d-dimensional in the nonlocal setting but zero-dimensional (a point) in the local setting. Dimension dependence in the Poin-
caré inequality is captured by dm (see Section 4.1) where the power m exhibits a dimensional dependence (i.e., m = m(d)).

For the upper bound, we prove a direct estimate instead of an inverse inequality. Neither the upper bound estimate nor
the Poincaré inequality requires discrete spaces. Hence, our estimate is valid in infinite dimensional function spaces, a stron-
ger result than that for the local setting.

We investigate the effect of the horizon size d on the conditioning of the underlying operators. Therefore, we reduce the
analysis to the case C(x,x0) = vd(x � x0) where vd(x � x0) denotes the canonical kernel function whose only role is the repre-
sentation of the neighborhood in (2.4) by a characteristic function. Namely,
vdðx� x0Þ :¼
1; kx� x0k 6 d;

0; otherwise:

�
ð4:1Þ
Note that vd(x � x0) is a radial function, which describes isotropic materials [40]. For the remainder of this article, we will
restrict our discussion to scalar problems. Namely, we set n = 1 in (3.1) which yields, for instance, u(x) = u(x),
C(x,x0) = C(x,x0), etc. Therefore, the bilinear form under consideration becomes
aðu;vÞ ¼ 1
2

Z
X

Z
X
vdðx� x0Þ½uðx0Þ � uðxÞ�½vðx0Þ � vðxÞ�dx0dx: ð4:2Þ
We state an important property of the canonical kernel which will be used in the upcoming proofs:
Z
X
vdðx� x0Þdx0 6 wdd

d; x 2 X; ð4:3Þ
where wd is the volume of the unit ball in Rd. Note that the equality in (4.3) is attained when the neighborhood of x; Hx in
(2.4), is entirely contained in X, i.e., when x 2X.

4.1. Nonlocal Poincaré inequality

In order to establish the coercivity of a(�, �), we prove a nonlocal Poincaré inequality.

Proposition 1. Let X � Rd be a bounded domain and u 2 L2;0 X
� �

. Then, there exists kPncr ¼ kPncr X; d
� �

> 0 such that
kPncrkuk2

L2 X
� 	 6 aðu; uÞ: ð4:4Þ
Proof. The proof is an extension of the one given in [28, Prop. 2.5] for a similar bilinear form. We construct a finite covering
for X using strips of width d/2 as follows:
S�1 :¼ x 2 BX :
d
2
6 distðx; @XÞ 6 d

� �
; ð4:5Þ

S0 :¼ x 2 BX n S�1 : distðx; S�1Þ 6
d
2

� �
; ð4:6Þ

S1 :¼ x 2 X : distðx; @XÞ 6 d
2

� �
; ð4:7Þ

Sj :¼ x 2 X n
[j�1

k¼1

Sk : distðx; Sj�1Þ 6
d
2

( )
; j ¼ 1; . . . ; l; ð4:8Þ
where dist denotes the shortest distance in the usual Euclidean sense. The number of strips covering X is l ¼ l X; d
� �

.
We trivially have the following for j = 0, . . . , l:
Z
X

Z
X
vdðx� x0Þjuðx0Þ � uðxÞj2dx0 dx P

Z
Sj

Z
Sj�1

vdðx� x0Þjuðx0Þ � uðxÞj2dx0 dx:
Using ju(x)j2 = ju(x0) � {u(x0) � u(x)}j2 6 2{ju(x0) � u(x)j2 + ju(x0)j2}, a change in the order of integration, and the following re-
sult (obtained from (4.3))
Z

Sj

vdðx� x0Þdx0 6 wdd
d;
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we obtain the following:
Z
Sj

Z
Sj�1

vdðx� x0Þjuðx0Þ � uðxÞj2dx0 dx P
1
2

Z
Sj

Z
Sj�1

vdðx� x0ÞjuðxÞj2dx0 dx�
Z

Sj

Z
Sj�1

vdðx� x0Þjuðx0Þj2dx0 dx

¼ 1
2

Z
Sj

Z
Sj�1

vdðx� x0Þdx0
( )

juðxÞj2dx�
Z

Sj�1

Z
Sj

vdðx� x0Þdx

( )
juðx0Þj2dx0

P
1
2

Z
Sj

Z
Sj�1

vdðx� x0Þdx0
( )

juðxÞj2dx�wdd
d
Z

Sj�1

juðx0Þj2dx0

P
1
2

min
x2Sj

Z
Sj�1

vdðx� x0Þdx0
Z

Sj

juðxÞj2dx�wdd
d
Z

Sj�1

juðx0Þj2dx0:
The function
FðxÞ :¼
Z

Sj�1

vdðx� x0Þdx0; x 2 Sj
is continuous, which follows from continuity of the integral operator and the fact that vd(x � x0) is integrable. By construc-
tion of the covering, we have
Sj�1 \ Bðx; dÞ–;; x 2 Sj;
where B(x,d) is a ball of radius d centered at x. Hence, we obtain
FðxÞ ¼measure x 2 Sj : Sj�1 \ Bðx; dÞ
n o� �

> 0; x 2 Sj:
Therefore by continuity, F(x) attains its infimum in Sj and we conclude that
aj :¼min
x2Sj

FðxÞ > 0:
Consequently, we have the inequality:
aj

4

Z
Sj

juðxÞj2dx 6 aðu;uÞ þwdd
d
Z

Sj�1

juðx0Þj2dx0: ð4:9Þ
From the boundary condition, we get
Z
S�1

juðxÞj2dx ¼
Z

S0

juðxÞj2dx ¼ 0:
Moreover due to the boundary condition and (4.9), we get
a1

4

Z
S1

juðxÞj2dx 6 aðu;uÞ: ð4:10Þ
For the cases j = 2, 3, we respectively have:
a2

4

Z
S2

juðxÞj2dx 6 aðu;uÞ þwdd
d
Z

S1

juðx0Þj2dx0 ð4:11Þ

a3

4

Z
S3

juðxÞj2dx 6 aðu;uÞ þwdd
d
Z

S2

juðx0Þj2dx0: ð4:12Þ
To relate (4.12) to right-hand side of (4.11), multiply (4.11) by (4wdd
d)/a2:
a3

4

Z
S3

juðxÞj2dx 6 1þ 4wdd
d

a2

 !
aðu; uÞ þ 4ðwdd

dÞ2

a2

Z
S1

juðx0Þj2dx0: ð4:13Þ
Then using (4.10) and (4.13) becomes:
a3

4

Z
S3

juðxÞj2dx 6 1þ 4wdd
d

a2
þ ð4wdd

dÞ2

a1a2

 !
aðu;uÞ:
Continuing this process, we see the existence of a constant c X; d
� �

satisfying:
aj

4

Z
Sj

juðxÞj2dx 6 c X; d
� �

aðu;uÞ; j ¼ �1; . . . ; l: ð4:14Þ
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Adding (4.14) for j =�1, . . . , l and using the fact that the covering of X is composed of disjoint strips, i.e.,

X ¼ [l
k¼�1Sk; Sj \ Sk ¼ ;; j – k, we arrive at the coercivity result. h
Remark 1. The coercivity proof in [28, Prop. 2.5] assumes a continuous kernel function. The coercivity proof we provide can
be generalized to any nonnegative locally integrable radial kernel function which satisfies C(r) > 0 on (0,d) see the companion
article [42, Lemma 2.4].
Remark 2. The above Poincaré type inequality can be established for general Dirichlet boundary conditions, i.e., u 2 L2 X
� �

with ujBX – 0. In this case, the inequality statement reads as follows:
kPncr X; d
� �

kuk2

L2 X
� 	 6 aðu;uÞ þ

Z
S�1

juðxÞj2dx; ð4:15Þ
where S�1 is the outermost strip of the covering of X. Deducing a coercivity estimate from (4.15) seems impossible unless a
zero nonloncal boundary condition is assumed. For mixed and Neumann type boundary conditions, see the companion paper
[42, Remark 2.5].
Remark 3. Coercivity of the bilinear form has also been established in [25] under the condition (see [25, Eq. (6.1)]) that
Z
BX

Cðx;x0Þdx0 P c > 0; x 2 X: ð4:16Þ
This condition is stringent because it assumes that all interior points interact directly with the nonlocal boundary BX, a sit-
uation only possible if the horizon d is on the order of jXj. For applications of practical interest especially in peridynamics,
horizon is set to be d� jXj because problems with large d are computationally intractable. The coercivity proof given in this
article does not assume (4.16).

For the condition number analysis, d-quantification is essential. In the companion article [42], the first author gives a
more refined nonlocal Poincaré inequality. Namely, for sufficiently small d:
krefined X
� �

ddþ2kuk2

L2 X
� 	 6 aðu;uÞ: ð4:17Þ
Note that krefined does not depend on d. In order to see why kPncr X; d
� �

can be refined to a constant krefined X
� �

, we proceed with
a 1D demonstration.

4.2. Demonstration of explicit d-dependence in the nonlocal Poincaré inequality

We demonstrate the lower bound in (4.17) by a 1D example. After enforcing a sufficient regularity assumption, we resort
to a Taylor series expansion. For that purpose, we assume that u 2 C4 X

� �
with homogenous Dirichlet boundary conditions

enforced on the nonlocal boundary BX. This demonstration is based on the desire to have the nonlocal bilinear form con-
verge to its corresponding local (classical) bilinear form as d ? 0. For discussions of convergence of other nonlocal operators
to their classical local counterparts, see [43,44].

For the sake of clarity, we utilize the equivalent bilinear form below given in (3.4) so that the effect of the boundary con-
dition can easily be seen. We accompany this with a change of variable as follows:
aðu;uÞ ¼ �
Z

X

Z
X\½x�d;xþd�

½uðx0Þ � uðxÞ�dx0
( )

uðxÞdx ¼ �
Z

X

Z
½x�d;xþd�

½uðx0Þ � uðxÞ�dx0
( )

uðxÞdx

¼ �
Z

X

Z d

�d
½uðxþ eÞ � uðxÞ�de

� �
uðxÞdx:
Using the Taylor expansion
uðxþ eÞ ¼ uðxÞ þ e
1!

du
dx
ðxÞ þ e2

2!

d2u

dx2 ðxÞ þ
e3

3!

d3u

dx3 ðxÞ þ Oðe
4Þ;
the integrand becomes:
½uðeþ xÞ � uðxÞ�uðxÞ ¼ e
du
dx
ðxÞuðxÞ þ e2

2!

d2u

dx2 ðxÞuðxÞ þ
e3

3!

d3u

dx3 ðxÞuðxÞ þ Oðe
4Þ:
Hence, we arrive at the following expression using ujoX = 0 (due to ujBX ¼ 0):
aðu;uÞ ¼ �
Z

X

d3

3
d2u

dx2 ðxÞuðxÞ þ Oðd
5Þ

( )
dx ¼ d3

3

Z
X

du
dx
ðxÞ du

dx
ðxÞdxþOðd5Þ:
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Now, denoting the local bilinear form by
‘ðu;uÞ :¼ juj2H1ðXÞ;
we connect the nonlocal and local bilinear forms:
aðu;uÞ ¼ d3

3
‘ðu;uÞ þ Oðd5Þ:
Therefore, the scaled nonlocal bilinear form asymptotically converges to the local bilinear form:
3d�3aðu;uÞ ¼ ‘ðu;uÞ þ Oðd2Þ: ð4:18Þ
Using the nonlocal Poincaré inequality (4.4) and (4.18), we have
lim
d!0

3kPncr X; d
� �

d�3kuk2

L2 X
� 	 6 ‘ðu; uÞ:
Therefore, for the left hand side to remain finite, we have to enforce that kPncr X; d
� �

¼ c X
� �

dm with m P 3. We desire the
largest possible lower bound in the nonlocal Poincaré inequality. This implies that m = 3, which is in agreement with
(4.17) and is observed numerically in 1D; see the experiments in Section 4.5.1.

4.3. An upper bound for a(u,u)

We prove the following dimension dependent estimate:

Lemma 1. Let X � Rd be bounded and u 2 L2 X
� �

. Then, there exists �k > 0 independent of X and d such that
aðu;uÞ 6 �kddkuk2

L2 X
� 	: ð4:19Þ
Proof. Using (u(x0) � u(x))2
6 2(u(x0)2 + u(x)2), we get
aðu;uÞ 6
Z

X

Z
X
vdðx� x0Þðu2ðxÞ þ u2ðx0ÞÞdx0 dx: ð4:20Þ
Furthermore, by a change in the order of integration and the fact that vd(x � x0) is an even function, one gets
Z
X

Z
X
vdðx� x0Þu2ðxÞdx0 dx ¼

Z
X

Z
X
vdðx� x0Þu2ðx0Þdx0 dx: ð4:21Þ
Then using (4.21) and (4.20) becomes:
aðu;uÞ 6 2
Z

X

Z
X
vdðx� x0Þu2ðxÞdx0 dx:
Using (4.3), we immediately have the upper bound:
2
Z

X

Z
X
vdðx� x0Þu2ðxÞdx0 dx 6 2wdd

dkuk2

L2 X
� 	 ¼: �kddkuk2

L2 X
� 	: �
Remark 4. The upper bound is sharp; see the companion article [42, Section 4]. We also numerically demonstrate the
numerical sharpness of the upper bound; see Section 4.5.
Remark 5. A proof similar to that of Lemma 1 can be given to show the boundedness of the bilinear form with an explicit
constant. Namely,
jaðu; vÞj 6 2wdd
dkuk

L2 X
� 	kvk

L2 X
� 	: ð4:22Þ
Also see the companion article [42] for the boundedness of the bilinear form for general kernel functions.
4.4. The conditioning of the stiffness matrix K

Combining the refined nonlocal Poincaré inequality (4.17) and the upper bound (4.19), we arrive at a condition number
estimate.
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Theorem 1. For sufficiently small d, the following spectral equivalence holds:
Table 4
Conditi
see tha

1/h

(a) F
2000
4000
8000

(b) F
8000
8000
8000
krefined X
� �

ddþ2
6

aðu;uÞ
kuk2

L2 X
� 	 6 �kdd; u 2 L2;0 X

� �
: ð4:23Þ
Let K be the stiffness matrix produced by discretizing a(u,u). Then, the condition number of K has the bound:
jðKÞK d�2: ð4:24Þ
The spectral equivalence (4.23) enables us to construct an h independent upper bound for the condition number.

Note that the condition number of the stiffness matrix also depends upon the mesh size h. As an illustration, consider that
the nonlocal bilinear form a(u,u) must converge to the corresponding local bilinear form in the limit d ? 0, as demonstrated
in Section 4.2, and that the condition number of the associated local stiffness matrix varies with h�2. Thus, the bound in
(4.24) is not tight in this limit, but allows us to investigate the highly nonlocal regime h� d, which is our principle interest.
For an alternative approach to quantifying mesh-dependence in the conditioning of nonlocal models, see [33].

4.5. Numerical verification of condition number by a finite element formulation

For all computational results in this article, we let X = [0,1]d be the unit d-cube, where d is the spatial dimension, with
X ¼ ½�d;1þ d�d the nonlocal closure. We impose the Dirichlet boundary condition u = 0 on BX ¼ X nX. We use a conforming
triangulation T h where each element E of T h is a d-cube with a side length h > 0. Consequently, each element in 1D, 2D, and
3D is a line segment of length h, a square of area h2, and a cube of volume h3, respectively. Let Vh � V be a finite dimensional
subspace of V from (3.1). We use a Galerkin finite element formulation of (3.2):
aðuh;vhÞ ¼ ðb; vhÞ 8vh 2 Vh ð4:25Þ
with Dirichlet boundary condition uh = 0 on BX, where Vh is the space of piecewise constant or piecewise linear shape func-
tions on the mesh T h, and where we employ the canonical kernel function vd from (4.1). We denote by K the stiffness matrix
arising from the left-hand side of (4.25). To verify our theoretical results we numerically determine the ratio of the largest
and smallest eigenvalues of K, defining the condition number of the problem.

4.5.1. Results in one dimension
Results in this section appear in Table 4.1 and Fig. 4.1, where we consider the h� d regime. We show results for both

piecewise constant and piecewise linear shape functions to verify that the choice of shape function apparently does not influ-
ence the conditioning of the discrete system. We first compute the condition number of K for different h while holding d
fixed, and observe that the condition number of K is only weakly h-dependent. The minimum and the maximum eigenvalues
depend linearly on h, with a slope of nearly unity. We then compute the condition number of K for different values of d while
holding h fixed, and observe that the condition number varies with d�2. Further, the maximum eigenvalue is proportional to
d, in agreement with Lemma 1. Lastly, the minimum eigenvalue varies as d3, in agreement with (4.17) and our finding of
m = 3 in Section 4.2. This suggests that, in one dimension, we should redefine C(x,x0) in (4.1) as
Cðx; x0Þ ¼ d�3; kx� x0k 6 d;

0; otherwise

(

for consistency with the weak form of the classical (local) Laplace operator in the limit d ? 0.

4.5.2. Results in two dimensions
Results in this section appear in Table 4.2 and Fig. 4.2. We consider only piecewise constant shape functions in 2D. We

first compute the condition number of K for different h while holding d fixed, and observe that minimum and maximum
.1
on number for K in 1D for (a) fixed d, allowing h to vary, and (b) fixed h, allowing d to vary, for both piecewise constant and linear shape functions. We
t the conditioning is apparently not strongly influenced by the choice of shape function. This data is plotted in Fig. 4.1.

1/d Piecewise constant shape functions Piecewise linear shape functions

kmin kmax Condition # kmin kmax Condition #

ixed d, vary h
20 1.94E�07 6.07E�05 3.13E+02 1.94E�07 6.07E�05 3.13E+02
20 9.69E�08 3.04E�05 3.13E+02 9.69E�08 3.04E�05 3.14E+02
20 4.84E�08 1.52E�05 3.14E+02 4.84E�08 1.52E�05 3.14E+02

ixed h, vary d
20 4.84E�08 1.52E�05 3.15E+02 4.84E�08 1.52E�05 3.14E+02
40 6.24E�09 7.61E�06 1.22E+03 6.24E�09 7.60E�06 1.22E+03
80 7.92E�10 3.80E�06 4.80E+03 7.91E�10 3.80E�06 4.80E+03
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Fig. 4.1. Condition number for K in 1D for (a) fixed d, allowing h to vary, and (b) fixed h, allowing d to vary. The condition number is only weakly
h-dependent, but varies with d�2. These figures are plotted from data in Table 4.1. The plots for piecewise linear and piecewise constant shape functions are
identical.

Table 4.2
Condition number for K in 2D using piecewise constant shape functions for (a) fixed d, allowing h to vary, and (b) fixed h, allowing
d to vary. This data is plotted in Fig. 4.2.

1/h 1/d kmin kmax Condition #

(a) Fixed d, vary h
50 10 2.95E�07 1.40E�05 4.77E+01
100 10 7.11E�08 3.54E�06 4.97E+01
200 10 1.75E�08 8.86E�07 5.05E+01

(b) Fixed h, vary d
200 10 1.75E�08 8.86E�07 5.05E+01
200 20 1.17E�09 2.22E�07 1.90E+02
200 40 7.63E�11 5.50E�08 7.21E+02

1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4
−8

−7

−6

−5

−4

−3

−2

−1

0

1

2

log (1/h)

1

2

log(λmin)

log(λmax)

log(Condition #)

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

−12

−10

−8

−6

−4

−2

0

2

4

log (1/ δ )

4

1

1
2

1

2

log(λmin)

log(λmax)

log(Condition #)

Fig. 4.2. Condition number for K in 2D for (a) fixed d, allowing h to vary, and (b) fixed h, allowing d to vary. The condition number is only weakly h-
dependent, but varies with d�2. These figures are plotted from data in Table 4.2.
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eigenvalues depend linearly on h with a slope of approximately two, and again the condition number of K depends only
weakly upon the mesh size. We then compute the condition number of K for different values of d while holding h fixed,
and observe that the condition number again varies as d�2, in agreement with (4.24). Further, the maximum eigenvalue is
proportional to d2 in agreement with Lemma 1, and the minimum eigenvalue is proportional to d4 in agreement with (4.17).

5. A nonlocal two-domain problem

We will construct a weak (variational) formulation for nonlocal domain decomposition. We first identify the pieces of the
domain for this decomposition. Consider the domain in Fig. 5.1. The nonlocal boundary of X; BX, is defined to be the closed
region of thickness d surrounding X. Let C be the open region corresponding to the interface between the two overlapping
open subdomains X(1) and X(2). We define the overlapping subdomains X(i), i = 1, 2, as the following:
Fig. 5.1
overlap
XðiÞ :¼ Xi [ C [ Ci;
where Ci is the open line segment adjacent to Xi and C. Let BXi be the nonlocal closed boundary of Xi that intersects BX. The
main domain decomposition contributions of this article, namely, the equivalence of the one-domain weak and two-domain
weak forms will be proved next.

5.1. Two-domain variational form

We present a two-domain weak formulation of (3.2) and prove its equivalence to the original single-domain formulation
(3.2). We define the spaces, i = 1, 2,
V ðiÞ :¼ v 2 L2 XðiÞ

 �

: v jBXi
¼ 0

� �
;

V ðiÞ;0 :¼ v 2 L2 XðiÞ

 �

: vjBXi[C[Ci
¼ 0

� �
;

K :¼ l 2 L2ðCÞ : l ¼ v jC for suitable v 2 L2;0 X
� �n o

:

ð5:1Þ
We can reduce the outer domain of integration in the bilinear form from X to X by taking advantage of the zero Dirichlet
boundary condition. Namely,
aðu;vÞ ¼ �
Z

X

Z
X
vdðx� x0Þ½uðx0Þ � uðxÞ�dx0

� �
vðxÞdx ¼ �

Z
X

Z
X
vdðx� x0Þ½uðx0Þ � uðxÞ�dx0

� �
vðxÞdx; v 2 V : ð5:2Þ
Therefore, our construction is based on the reduced bilinear form (5.2). We further define a bilinear form
aXðiÞ ðu;vÞ : V � V ! R as follows:
aXðiÞ ðu; vÞ :¼ �
Z

Xi

Z
XðiÞ[BXi

vdðx� x0Þ½uðx0Þ � uðxÞ�dx0
( )

vðxÞdx� 1
2

Z
C

Z
X
vdðx� x0Þ½uðx0Þ � uðxÞ�dx0

� �
vðxÞdx: ð5:3Þ
We utilize the following notation to suppress the integrals in (5.3):
aXi
ðu;vÞ :¼ �

Z
Xi

Z
XðiÞ[BXi

vdðx� x0Þ½uðx0Þ � uðxÞ�dx0
( )

vðxÞdx; ð5:4Þ

aCðu;vÞ :¼ �
Z

C

Z
X
vdðx� x0Þ½uðx0Þ � uðxÞ�dx0

� �
vðxÞdx: ð5:5Þ
. A nonlocal two-domain problem. This is a decomposition of the domain X in Fig. 2.1 into overlapping subdomains X(1), X(2), and BX into
ping nonlocal boundaries BX1; BX2. Note that the interface C is d = 2-dimensional.
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We can now represent the bilinear form (5.3) as:
aXðiÞ ðu; vÞ ¼
1
2

aCðu;vÞ þ aXi
ðu;vÞ:
Remark 6. The test function v i ¼ v jXi
2 V ðiÞ;0; i ¼ 1;2 has its support only in Xi not X(i). Hence, we may reduce the bilinear

form (5.3) to
aXðiÞ uðiÞ;v i
� 	

¼ aXi
uðiÞ;v i
� 	

: ð5:6Þ
Although, aC(u(i),vi) may appear to create a coupling between the subdomains, no such coupling exists because vi vanishes on
C. Therefore, subdomain condition (5.7a) is an expression only for subdomain X(i).

Now, we state the two-domain weak form following the notation of [16]: Find u(i) 2 V(i), i = 1, 2:
aXðiÞ uðiÞ;v i
� 	

¼ ðb;v iÞXi
8v i 2 V ðiÞ;0; ð5:7aÞ

uð1Þ ¼ uð2Þ on C; ð5:7bÞ
X
i¼1;2

aXðiÞ uðiÞ;RðiÞl
� 	

¼ ðb;lÞC þ
X
i¼1;2

b;RðiÞl
� 	

Xi
8l 2 K: ð5:7cÞ
whereRðiÞ denotes any possible extension operator from L2(C) to V(i). An extension operatorRðiÞ : L2ðCÞ ! V ðiÞ is defined to be
an operator which satisfies ðRðiÞgÞjC ¼ g for g 2 L2(C). Next, we will show that the one- and two-domain weak forms are
equivalent. The proof for the local case can be found in [16, Lemma 1.2.1].

Lemma 2. The problems (3.2) and (5.7) are equivalent.
Proof. (3.2)) (5.7):
Let uðiÞ ¼ ujXðiÞ 2 V ðiÞ and v i ¼ v jXi

2 V ðiÞ;0; i ¼ 1;2. Extend these functions by zero extension;
hðiÞuðiÞ :¼ uðiÞ; in XðiÞ

0; otherwise;

(

hiv i :¼
v i; in Xi

0; otherwise:

�

By LHS of (3.2) and using vijC = 0:
aðhðiÞuðiÞ; hiv iÞ ¼ �
Z

X

Z
X
vdðx� x0Þ hðiÞuðiÞðx0Þ � hðiÞuðiÞðxÞ

h i
dx0

� �
hiv iðxÞdx ¼ aXi

uðiÞ;v i
� 	

¼ 1
2

aC uðiÞ; v i
� 	

þ aXi
uðiÞ;v i
� 	

¼ aXðiÞ uðiÞ; v i
� 	

:

By RHS of (3.2),
ðb; hiv iÞ ¼ ðb;v iÞXi
:

Hence, (5.7a) is satisfied. (5.7b) is trivially satisfied.
Further, for l 2K define the function Rl as:
Rl :¼ Rð1Þl; in Xð1Þ

Rð2Þl; in Xð2Þ:

(

Since Rl lives only in X1 [ C1 [ C [ C2 [X2, it vanishes on BX. Therefore, Rl 2 V .
From (3.2), partitioning the outer integral and using Rð1Þl ¼ Rð2Þl ¼ l on C, we obtain the LHS of (5.7c):
aðu;RlÞ ¼ 1
2

aC uð1Þ;l
� 	

þ 1
2

aC uð2Þ;l
� 	

þ
X
i¼1;2

aXi
uðiÞ;RðiÞl
� 	

¼ 1
2

aC uð1Þ;Rð1Þl
� 	

þ 1
2

aC uð2Þ;Rð2Þl
� 	

þ
X
i¼1;2

aXi
uðiÞ;RðiÞl
� 	

¼ aXð1Þ uð1Þ;Rð1Þl
� 	

þ aXð2Þ uð2Þ;Rð2Þl
� 	

:

Likewise, from (3.2) and partitioning the integral, we obtain the RHS of (5.7c):
ðb;RlÞX ¼ ðb;Rð1ÞlÞX1
þ ðb;Rð2ÞlÞX2

þ ðb;lÞC:
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Hence, we obtain the transmission condition (5.7c).
(5.7)) (3.2):
Let uC :¼ u(1)jC (due to (5.7b), we also have uC = u(2)jC) and
u :¼
uð1Þ; in X1

uð2Þ; in X2

uC; in C:

8><
>: ð5:8Þ
We partition the outer integral, use (5.8) and the transmission condition (5.7b). Then, for v 2 V, LHS in (3.2) becomes the
following:
aðu;vÞ ¼ 1
2

aCðu;vÞ þ
1
2

aCðu;vÞ þ
X
i¼1;2

aXi
ðu;vÞ ¼ 1

2
aCðuC;vÞ þ

1
2

aCðuC; vÞ þ
X
i¼1;2

aXi
uðiÞ; v
� 	

¼ 1
2

aC uð1Þ; v
� 	

þ 1
2

aC uð2Þ;v
� 	

þ
X
i¼1;2

aXi
uðiÞ;v
� 	

¼
X
i¼1;2

aXðiÞ uðiÞ; v
� 	

: ð5:9Þ
Let l :¼ vjC. Then, v �RðiÞl 2 V ðiÞ;0. First, we add and subtract RðiÞl to the second slot of the bilinear form in (5.9) and apply
the domain conditions (5.7a) for v �RðiÞl. Then, we apply the transmission condition (5.7c) and use vjC = l. Hence, we arrive
at the RHS in (3.2):
X

i¼1;2

aXðiÞ ðu
ðiÞ;vÞ ¼

X
i¼1;2

aXðiÞ ðu
ðiÞ;v �RðiÞlÞ þ

X
i¼1;2

aXðiÞ uðiÞ;RðiÞl
� 	

¼
X
i¼1;2

b;v �RðiÞl
� 	

Xi
þ
X
i¼1;2

aXðiÞ uðiÞ;RðiÞl
� 	

¼
X
i¼1;2

b; v �RðiÞl
� 	

Xi
þ ðb;lÞC þ

X
i¼1;2

b;RðiÞl
� 	

Xi
¼ ðb;lÞC þ

X
i¼1;2

ðb;vÞXi
¼ ðb;vÞ: �
6. Towards nonlocal substructuring

Here we write out the linear algebraic representations arising from the two-domain weak form (5.7), identifying the dis-
crete subdomain equations and transmission conditions. We then construct a nonlocal Schur complement, discuss its con-
dition number as a function of h, d, and provide supporting numerical experiments.

6.1. Linear algebraic representations

We consider a finite element discretization of (5.7). Letting V ðiÞh denote the finite element space corresponding to X(i), we
define:
V ðiÞ;0h :¼ vh 2 V ðiÞh : vhjBXi[C[Ci
¼ 0

n o

Kh :¼ lh 2 L2ðCÞ : lh ¼ vhjC for some suitable vh 2 Vh

� �
:

Here, Kh denotes a finite element discretization of L2(C). We see that the finite element formulation of (5.7) can be written
as:
aXðiÞ uðiÞh ;v i;h

� �
¼ ðb;v i;hÞXi

8v i;h 2 V ðiÞ;0h ; ð6:1aÞ

uð1Þh ¼ uð2Þh on C; ð6:1bÞ

X
i¼1;2

aXðiÞ uðiÞh ;R
ðiÞ
h lh

� �
¼ ðb;lhÞC þ

X
i¼1;2

ðb;RðiÞh lhÞXi
8lh 2 Kh: ð6:1cÞ
where RðiÞh denotes any possible extension operator from Ch to V ðiÞh . Following standard practice, we take these extension
operators to be the finite element interpolant, which is defined to be equal to lh at the nodes in the thick interface C and
zero on the internal nodes of Xi. If we number nodes in X1 first, nodes in X2 second, and nodes in C last, we will arrive
at a global stiffness matrix that takes the traditional block arrowhead form:
K ¼
K11 0 K1C

0 K22 K2C

KC1 KC2 KCC

2
64

3
75

u1

u2

uC

2
64

3
75 ¼

f1

f2

fC

2
64

3
75: ð6:2Þ
The first two block rows of the matrix in (6.2) arise from discretizing (6.1a), and the last block row arises from discretizing
(6.1c).
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6.2. Discrete energy minimizing extension and the Schur complement conditioning

In order to study the conditioning of the Schur complement in the nonlocal setting, we define an analog of the discrete
harmonic extension in the local case.

Definition 1. For a given q 2 Kh; Ei : Kh ! V ðiÞh defines a discrete energy minimizing extension into Xi, if
EiðqÞjC ¼ q;

aiðEiðqÞ; vÞ ¼ 0; v 2 V ðiÞ;0h ;
ð6:3Þ
where ai(�, �) denotes the bilinear form restricted to XðiÞ. Namely,
aiðu; vÞ ¼
Z

XðiÞ

Z
XðiÞ

vdðx� x0Þ½uðx0Þ � uðxÞ�dx0
� �

vðxÞdx:
The energy minimizing extension Ei(q) of q defines a canonical bilinear form siðq; qÞ : Kh �Kh ! R that is associated to the
interface C whose discretization corresponds to the subdomain Schur complement matrix S(i) below. Let q denote the vector
representation of q.
siðq; qÞ :¼ aiðEiðqÞ; EiðqÞÞ ð6:4Þ

qtSðiÞq ¼ aiðEiðqhÞ; EiðqhÞÞ: ð6:5Þ
Let us denote the restriction of u 2 V ðiÞh to C by uC :¼ ujC. The following discussion will reveal the reason why Ei(uC) is called
an energy minimizing extension. Let us consider the following decomposition of u:
u ¼ ½u� EiðuCÞ� þ EiðuCÞ: ð6:6Þ
Since (u � Ei(uC))jC = 0, by Definition 1 we have:
ai u� EiðuCÞ; EiðuCÞð Þ ¼ 0: ð6:7Þ
Using (6.6) and (6.7), we have the energy minimizing property of Ei(uC) among u 2 V ðiÞh with ujC = uC:
aiðu;uÞ ¼ ai u� EiðuCÞ;u� EiðuCÞð Þ þ 2ai u� EiðuCÞ; EiðuCÞð Þ þ ai EiðuCÞ; EiðuCÞð ÞP aiðEiðuCÞ; EiðuCÞÞ: ð6:8Þ
Therefore, using (6.8), (6.4) and (4.19), we have:
siðuC;uCÞ 6 aiðu;uÞ 6 �kddkuk2

L2 XðiÞ
� �;
for all u 2 V ðiÞh , in particular, for u = uC. Hence,
siðuC;uCÞ 6 �kddkuk2
L2ðCÞ: ð6:9Þ
For the lower bound, we simply use (6.3) and (4.17):
krefinedd
dþ2kuk2

L2ðCÞ 6 krefinedd
dþ2kEiðuCÞk2

L2ðXðiÞÞ
6 aiðEiðuCÞ; EiðuCÞÞ ¼ siðuC;uCÞ: ð6:10Þ
We have proved the following spectral equivalence result:

Theorem 2. For any q 2Kh � L2(C), we have:
krefinedd
dþ2
6

siðq; qÞ
kqk2

L2ðCÞ
6 �kdd: ð6:11Þ
Thus, the condition number of the Schur complement matrix SC :¼ S(1) + S(2) has the following bound:
jðSCÞK d�2:
Remark 7. The preceding condition number estimate indicates that the condition number of the Schur complement is no
greater than that of the corresponding stiffness matrix; see (4.24). This estimate is not tight. In fact, we numerically observe
smaller condition numbers for the Schur complement; see Table 6.1.
6.2.1. The nonlocal Schur complement matrix
When the contributions from each subdomain are accounted separately, we can write KCC in (6.2) as KCC ¼ Kð1ÞCC þ Kð2ÞCC.

Then, S(i) in (6.5) can be written as follows:
SðiÞ :¼ KðiÞCC � KCiK
�1
ii KiC:



Table 6.1
Condition number for SC in 1D for (a) fixed d, allowing h to vary, and (b) fixed h, allowing d to vary. This data is plotted in Fig. 6.1.

1/h 1/d Piecewise constant shape functions Piecewise linear shape functions

kmin kmax Condition # kmin kmax Condition #

(a) Fixed d, vary h
2000 20 1.64E�06 5.01E�05 3.06E+01 1.63E�06 4.97E�05 3.04E+01
4000 20 8.21E�07 2.50E�05 3.05E+01 8.21E�07 2.49E�05 3.03E+01
8000 20 4.12E�07 1.25E�05 3.04E+01 4.12E�07 1.25E�05 3.03E+01

(b) Fixed h, vary d
8000 20 4.12E�07 1.25E�05 3.04E+01 4.12E�07 1.25E�05 3.03E+01
8000 40 1.03E�07 6.26E�06 6.07E+01 1.03E�07 6.23E�06 6.04E+01
8000 80 2.57E�08 3.13E�06 1.22E+02 2.57E�08 3.11E�06 1.21E+02

6512 B. Aksoylu, M.L. Parks / Applied Mathematics and Computation 217 (2011) 6498–6515
The solution across the whole of C is determined by solving SCuC ¼ ~f for uC, where
Fig. 6.1
depend
identica
~f :¼ fC � KC1K�1
11 f1 � KC2K�1

22 f2:
We observed in Section 4.5 that the condition number of the stiffness matrix K depends only weakly upon the mesh size h.
Therefore, we expect that the condition number of the Schur complement matrix SC should at most depend only weakly
upon h. We will examine this conjecture in Section 6.3.

6.3. Numerical verification of the Schur complement conditioning

To test the conjecture of the previous section, we discretize the Dirichlet boundary value problem
siðuh; vhÞ ¼ ðb;vhÞ 8vh 2 Kh; ð6:12Þ
with uh = 0 on BX, using piecewise constant and piecewise linear shape functions on uniform cartesian mesh, and numeri-
cally determine the ratio of the largest and smallest eigenvalues, defining the condition number of the problem.

6.3.1. Results in one dimension
We define the regions X1 = (0,0.5 � d/2), X2 = (0.5 + d/2,1), and C = (0.5 � d/2,0.5 + d/2), such that C is always a region of

width d centered at x = 0.5. We then compute the largest and smallest eigenvalues of SC. We show results for both piecewise
constant and piecewise linear shape functions to verify that the choice of shape function does not play a role in the condi-
tioning of the discrete system.

We first compute the condition number of SC for different h while holding d fixed. Our results appear in Table 6.1 and
Fig. 6.1. The minimum and maximum eigenvalues depend linearly on h, with a slope of nearly unity. Consequently, the con-
dition number of SC is only weakly h-dependent. We then compute the condition number of SC for different d while holding
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. Condition number for SC in 1D for (a) fixed d, allowing h to vary, and (b) fixed h, allowing d to vary. The condition number of SC is only weakly h-
ent, but varies with d�1. These figures are plotted from data in Table 6.1. The plots for piecewise linear and piecewise constant shape functions are
l.



Table 6.2
Condition number for SC in 2D for (a) fixed d, allowing h to vary, and (b) fixed h, allowing d to vary. This data is plotted in Fig. 6.2.

1/h 1/d kmin kmax Condition #

(a) Fixed d, vary h
50 10 1.14E�06 1.38E�05 1.21E+01
100 10 2.57E�07 3.48E�06 1.36E+01
200 10 6.61E�08 8.70E�07 1.32E+01

(b) Fixed h, vary d
200 10 6.61E�08 8.70E�07 1.32E+01
200 20 7.87E�09 2.18E�07 2.77E+01
200 40 1.09E�09 4.51E�08 4.96E+01
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Fig. 6.2. Condition number for SC in 2D for (a) fixed d, allowing h to vary, and (b) fixed h, allowing d to vary. The condition number of SC in 2D is only weakly
h-dependent, but varies with d�1. These figures are plotted from data in Table 6.2.

Table 7.1
The d-quantification of the reported numerical results.

Dim kmin(K) kmax(K) j(K) kmin(SC) kmax(SC) j(SC)

1D Oðd3Þ OðdÞ Oðd�2Þ Oðd2Þ OðdÞ Oðd�1Þ
2D O d4

� �
Oðd2Þ Oðd�2Þ Oðd3Þ Oðd2Þ Oðd�1Þ
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h fixed, and observe that the condition number varies nearly as d�1, which is better conditioned than the original stiffness
matrix K, whose condition number varied with d�2.

6.3.2. Results in two dimensions
We define the regions X1 = (0,0.5 � d/2) � (0,1), X2 = (0.5 + d/2,1) � (0,1), and C = (0.5 � d/2,0.5 + d/2) � (0,1), such that

C is always a region of width d centered at x = 0.5. We then compute the largest and smallest eigenvalues of SC. We consider
only piecewise constant shape functions in 2D, having established that the choice of shape function does not affect the
conditioning.

We first compute the condition number of SC for different h while holding d fixed, and observe that minimum and max-
imum eigenvalues depend linearly on h with a slope of approximately two, and again the condition number of K depends
only weakly upon the mesh size. Our results appear in Table 6.2 and Fig. 6.2. We then compute the condition number of
SC for different d while holding h fixed, and observe that the condition number again varies as d�1.

7. Conclusions and future work

We have presented a variational theory for nonlocal problems, such as (1.1). With this theory, we proved the well-posed-
ness of the variational formulation of nonlocal boundary value problems with Dirichlet boundary conditions and practical
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kernel functions that are relevant to peridynamics. In addition, we proved a spectral equivalence estimate which leads to a
mesh-size independent upper bound for the condition number of the stiffness matrix. The spectral equivalence relies on the
upper bound (4.19) and the nonlocal Poincaré inequality (4.17) for the lower bound, where in both the d-dependence and
dimension dependence have been explicitly quantified. Supporting numerical experiments demonstrated the sharpness of
the upper bound (4.19) as well as the lower bound (4.17). Explicit d-quantification in the condition number bound serves
to guide preconditioner construction for nonlocal problems. We then constructed a nonlocal domain decomposition frame-
work with associated nonlocal transmission conditions, also proving equivalence between the one-domain and two-domain
nonlocal Dirichlet boundary value problems. We defined an energy minimizing extension, analogous to a harmonic exten-
sion used in the local case, to analyze the condition number of the nonlocal Schur complement operator. We discretized our
two-domain weak form to arrive at a nonlocal Schur complement matrix. Conditioning of the nonlocal Schur complement
matrix was explored via numerical studies. We summarize the numerical results in Table 7.1. We observe that j(K) and
j(SC) are only weakly dependent upon the mesh size but vary with d�2 and d�1, respectively.

It is interesting to compare the conditioning of the discrete nonlocal problem with the conditioning of the (local) discrete
Laplace equation. The condition number of the stiffness matrix for the local discrete Laplace equation varies with h�2 [17,
Theorem B.32], and the corresponding Schur complement matrix condition number varies with h�1 [17, Lemma 4.11]. For
a fixed mesh size 0 < h� d, we see from Table 7.1 that the discrete nonlocal stiffness matrix K varies with d�2, and the con-
dition number of the corresponding nonlocal Schur complement matrix SC varies as d�1.

Application of an appropriate preconditioner, involving the solution of a coarse problem, reduces the condition number of
the Schur complement of the weak classical (local) Laplace operator from OððHhÞ�1Þ to Oðð1þ logðH=hÞÞ2Þ, where H is the
subdomain size [17, Lemma 4.11], [2, Section 4.3.6]. One unexplored area involves examining the role of a coarse problem
in the nonlocal setting, which has not been considered here. A logical direction would be to expand other substructuring
methods to a nonlocal setting, such as Neumann–Dirichlet, Neumann–Neumann, FETI-DP (the dual-primal finite element
tearing and interconnecting method) [7], or BDDC (balancing domain decomposition by constraints) [15]. Additional oppor-
tunities for future research include addressing convergence analysis for alternative domain decomposition methods not
based on substructuring in a nonlocal setting. More fundamental concepts in Schwarz theory such as stable decompositions
and local solvers need to be reconstructed for nonlocal problems to support convergence analysis for additive, multiplicative,
and hybrid algorithms.
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