An observation on the determinant of a Sylvester-Kac type matrix

Carlos M. da Fonseca and Emrah Kılıç

Abstract

Based on a less-known result, we prove a recent conjecture concerning the determinant of a certain Sylvester-Kac type matrix related to some Lie Algebras. The determinant of an extension of that matrix is presented.

1 Introduction

Matrices and Lie algebras have an interesting long relation and share many problems. In a recent paper, Z. Hu and P.B. Zhang consider in [11] the polynomial

$$
\operatorname{det}\left(z_{0} I+z_{1} A_{1}+\cdots+z_{s} A_{s}\right)
$$

where A_{1}, \ldots, A_{s} are square matrices of the same order the I the identity matrix. Then they calculate the determinant of the finite dimensional irreducible representations of $s l(2, F)$, and show that is either zero or a product of some irreducible quadratic polynomials. In addition, it is proved that a finite dimensional Lie algebra is solvable if and only if the characteristic polynomial is completely reducible. For their purposes, they consider a specialised tridiagonal matrix with zero main diagonal, $(1,2, \ldots, n)$ superdiagonal, and $(n, n-1, \ldots, 1)$ subdiagonal. Then they establish a conjecture, proved in two very particular cases.

The aim of this short note is to prove that conjecture based on a less-known result by W. Chu in [3]. We also provide a new general formula containing other particular known determinants. This formula can be used to extend [11], and useful both in Lie algebras and matrix theory.

[^0]
2 The conjecture

Quite recently, in order to find formulas for the determinants of some Lie algebras, Z. Hu and P.B. Zhang proposed in [11] the following conjecture.
Conjecture 1. The determinant of the matrix $(n+1) \times(n+1)$

$$
J_{n}\left(z_{0}, z_{1}\right)=\left(\begin{array}{cccccc}
z_{0}+n z_{1} & 1 & & & & \\
n & z_{0}+(n-2) z_{1} & 2 & & & \\
& n-1 & z_{0}+(n-4) z_{1} & \ddots & & \\
& & \ddots & \ddots & n-1 & \\
& & & 2 & z_{0}-(n-2) z_{1} & n \\
& & & & 1 & z_{0}-n z_{1}
\end{array}\right)
$$

is

$$
\prod_{k=0}^{n}\left(z_{0}-(n-2 k) \sqrt{z_{1}^{2}+1}\right)
$$

Notice that Conjecture 1 is equivalent to state that the eigenvalues of $J_{n}\left(0, z_{1}\right)$ are

$$
\pm(n-2 k) \sqrt{z_{1}^{2}+1}, \quad \text { for } k=0,1, \ldots,\lfloor n / 2\rfloor
$$

The matrix $J_{n}\left(z_{0}, z_{1}\right)$ can be easily identified as an extension of the socalled Sylvester-Kac matrix. In fact, setting $z_{1}=0$ we find the characteristic matrix of the Sylvester-Kac matrix, also known as Clement matrix,

$$
\left(\begin{array}{ccccc}
0 & 1 & & & \\
n & 0 & 2 & & \\
& n-1 & 0 & \ddots & \\
& & \ddots & \ddots & n \\
& & & 1 & 0
\end{array}\right)
$$

The characteristic polynomial of this matrix (that is, $\operatorname{det} J_{n}(x, 0)$) was first conjecture in [20], by the 19th century British mathematician James Joseph Sylvester celebrated, among other facets, as the founder of the American Journal of Mathematics, in 1878.

A fully comprehensive list of results on the different proofs for Sylvester's conjecture and the eigenpairs of non-trivial extensions of the Sylvester-Kac matrix can be found in $[1-10,12-19,21,22]$.

The aim of this short note is to prove Conjecture 1 based on a result by W. Chu in [3]. We also provide a general result containing other particular known determinants.

3 An extension to the Sylvester-Kac matrix

In 2010, cleverly based on two generalized Fibonacci sequences, W. Chu proved the following theorem.

Theorem 3.1 ([3]). The determinant of the matrix $(n+1) \times(n+1)$

$$
M_{n}(x, y, u, v)=\left(\begin{array}{cccccc}
x & u & & & & \\
n v & x+y & 2 u & & & \\
& (n-1) v & x+2 y & \ddots & & \\
& & \ddots & \ddots & n-1 & \\
& & & 2 v & x-(n-1) y & n u \\
& & & & v & x+n y
\end{array}\right)
$$

is

$$
\prod_{k=0}^{n}\left(x+\frac{n y}{2}+\frac{n-2 k}{2} \sqrt{y^{2}+4 u v}\right)
$$

Of course, the formula for the determinant in Theorem 3.1 can be rewritten as

$$
\prod_{k=0}^{\lfloor n / 2\rfloor}\left(\left(x+\frac{n y}{2}\right)^{2}-\frac{(n-2 k)^{2}}{4}\left(y^{2}+4 u v\right)\right)
$$

Now setting $x=z_{0}+n z_{1}, y=-2 z_{1}$, and $u=v=1$, we prove immediately Conjecture 1.

Moreover, in the spirit of $[1,9,10]$, using Theorem 3.1, we can also conclude the following theorem.

Theorem 3.2. The eigenvalues of
$M_{n}^{ \pm}(a, b, r)=\left(\begin{array}{cccccc}n a r & b & & & & \\ n a & ((n-1) a \pm b) r & 2 b & & & \\ & (n-1) a & ((n-2) a \pm 2 b) r & 3 b & & \\ & & (n-2) a & \ddots & \ddots & \\ & & & \ddots & \ddots & n b \\ & & & & a & \pm n b r\end{array}\right)$
are

$$
\frac{1}{2}\left(n r(a \pm b)+(n-2 k) \sqrt{4 a b+r^{2}(a \mp b)^{2}}\right)
$$

for $k=0,1, \ldots, n$.

References

[1] R. Askey, Evaluation of Sylvester type determinants using orthogonal polynomials, In: H.G.W. Begehr et al. (eds.): Advances in analysis. Hackensack, NJ, World Scientific 2005, pp. 1-16.
[2] T. Boros, P. Rózsa, An explicit formula for singular values of the Sylvester-Kac matrix, Linear Algebra Appl. 421 (2007), 407-416.
[3] W. Chu, Fibonacci polynomials and Sylvester determinant of tridiagonal matrix, Appl. Math. Comput. 216 (2010), 1018-1023.
[4] W. Chu, X. Wang, Eigenvectors of tridiagonal matrices of Sylvester type, Calcolo 45 (2008), 217-233.
[5] P.A. Clement, A class of triple-diagonal matrices for test purposes, SIAM Rev. 1 (1959), 50-52.
[6] A. Edelman, E. Kostlan, The road from Kac's matrix to Kac's random polynomials, in: J. Lewis (Ed.), Proc. of the Fifth SIAM Conf. on Applied Linear Algebra, SIAM, Philadelpia, 1994, pp. 503-507.
[7] D.K. Faddeev, I.S. Sominskii, in: J.L. Brenner (Translator), Problems in Higher Algebra, Freeman, San Francisco, 1965.
[8] C.M. da Fonseca, E. Kılıç, A new type of SylvesterKac matrix and its spectrum, Linear and Multilinear Algebra doi.org/10.1080/03081087.2019.1620673
[9] C.M. da Fonseca, D.A. Mazilu, I. Mazilu, H.T. Williams, The eigenpairs of a Sylvester-Kac type matrix associated with a simple model for onedimensional deposition and evaporation, Appl. Math. Lett. 26 (2013), 1206-1211.
[10] O. Holtz, Evaluation of Sylvester type determinants using blocktriangularization, In: H.G.W. Begehr et al. (eds.): Advances in analysis. Hackensack, NJ, World Scientific 2005, pp. 395-405.
[11] Z. Hu, P.B. Zhang, Determinants and characteristic polynomials of Lie algebras, Linear Algebra Appl. 563 (2019), 426-439.
[12] Kh.D. Ikramov, On a remarkable property of a matrix of Mark Kac, Math. Notes 72 (2002), 325-330.
[13] M. Kac, Random walk and the theory of Brownian motion, Amer. Math. Monthly 54 (1947), 369-391.
[14] E. Kılıç, Sylvester-tridiagonal matrix with alternating main diagonal entries and its spectra, Inter. J. Nonlinear Sci. Num. Simulation 14 (2013), 261-266.
[15] E. Kılıç, T. Arıkan, Evaluation of spectrum of 2-periodic tridiagonalSylvester matrix, Turk. J. Math. 40 (2016), 80-89.
[16] T. Muir, The Theory of Determinants in the Historical Order of Development, vol. II, Dover Publications Inc., New York, 1960 (reprinted)
[17] R. Oste, J. Van den Jeugt, Tridiagonal test matrices for eigenvalue computations: Two-parameter extensions of the Clement matrix, J. Comput. Appl. Math. 314 (2017), 30-39.
[18] P. Rózsa, Remarks on the spectral decomposition of a stochastic matrix, Magyar Tud. Akad. Mat. Fiz. Oszt. Közl. 7 (1957), 199-206.
[19] E. Schrödinger, Quantisierung als Eigenwertproblem III, Ann. Phys. 80 (1926), 437-490.
[20] J.J. Sylvester, Théorème sur les déterminants de M. Sylvester, Nouvelles Ann. Math. 13 (1854), 305.
[21] O. Taussky, J. Todd, Another look at a matrix of Mark Kac, Linear Algebra Appl. 150 (1991), 341-360.
[22] I. Vincze, Über das Ehrenfestsche Modell der Wärmeübertragung, Archi. Math XV (1964), 394-400.

Carlos M. da Fonseca,
Kuwait College of Science and Technology,
Doha District, Block 4,
Email: carlos@sci.kuniv.edu.kw
University of Primorska, FAMNIT,
Glagoljaška 8, 6000 Koper, Slovenia.
Email: carlos.dafonseca@famnit.upr.si
Emrah Kılıç,
TOBB University of Economics and Technology,
Mathematics Department,
06560 Ankara, Turkey.
Email: ekilic@etu.edu.tr

[^0]: Key Words: Sylvester-Kac matrix, Clement matrix, determinant, eigenvalues, Lie algebras. 2010 Mathematics Subject Classification: Primary 15A18; Secondary 15A15.
 Received: 25.03.2019.
 Accepted: 25.04.2019.

