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ABSTRACT 
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Climate change can cause a cascade of effects from the individual organisms to 

ecosystem-scale where in nature all species are elements of complex networks of 

interactions so every effect on every scale has great role. The properties of those 

networks are decisive on ecosystems all around the world so how they will be modified 

by climate change needs serious studies. Urban areas’ vast population exert significant 

effects on the climate change even though they cover a small proportion of the Earth’s 

surface, however, impacts of the urbanization on climate and ecosystems remain 

inadequately understood. In the meantime, urbanization continues to increase and in 

the 2030, 2/3 of the population is expected to be living in urban areas and this rate will 

increase in time. It is of importance to elaborate the studies investigating the relations 

between the urbanization and climate. In this respect, the use of information 

technologies with an extensive computational capacity is one of the cornerstones of 

the climate and urban studies. 
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Machine learning algorithms is a branch of computer science that deals with automated 

recognition of patterns from data. The use of the machine learning algorithms can bring 

great advantages to both understanding and predicting the climate. The computational 

power with big data and ability to capture nonlinear behavior, learn as new data arrive, 

etc. make the machine learning favorable tool for understanding climate and 

developing urban planning. In this sense, purpose of this study is showing the 

advantages of machine learning algorithms by achieving working recurrent neural 

network algorithm to make climate predictions, and through this achievement, stating 

possible effects of machine learning on design and its contribution to understanding 

the climate.  

Keywords: Architecture, Climate, Urban Design, Climate Change, Machine 
Learning.
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Yüksek Lisans Tezi 

 
KENTSEL İKLİM VE YAPILI ÇEVRE İLİŞKİLERİNİN MAKİNE ÖĞRENİMİ 

İLE İNCELENMESİ 

Mustafa KOÇ 

TOBB Ekonomi ve Teknoloji Üniveritesi 
Fen Bilimleri Enstitüsü 
Mimarlık Anabilim Dalı 

Danışman: Dr. Öğr. Üyesi Aktan Acar 
Tarih: Nisan 2020 

  
İklim değişikliği, bütün türlerin karmaşık bir etkileşim ağının öğesi olduğu doğada, 

tek organizma ölçeğinden ekosistem ölçeğine kadar bir etkiler zincirine sebep olabilir; 

bu nedenle her ölçekteki her etkinin değişimdeki rolü çok büyüktür. Bu ağların 

özellikleri, dünyadaki bütün ekosistemlerde belirleyici role sahiptir, bu nedenle iklim 

değişikliğinden nasıl etkileneceği ciddi araştırmalar sonucunda ortaya çıkacaktır. 

Kentsel alanlar, Dünya yüzeyinin küçük bir kısmını oluşturmasına rağmen iklim 

değişikliği üzerinde önemli etkiler yaratmaktadırlar ve bu etkilere karşın, 

kentleşmenin iklim ve ekosistemler üzerindeki etkileri yeterince çalışılmamıştır. Bu 

arada, kentleşme dünya genelinde artmaya devam etmektedir ve 2030'da nüfusun 

2/3'ünün kentsel alanlarda yaşaması ve bu oranın zamanla artması beklenmektedir. 

Kentleşmeyi arttırmak, kentsel klimatolojiyi anlamayı ve gelecekteki senaryoları 

tahmin etmeyi iklim değişikliği konusunda önemli bir sorun haline getirmektedir. 

Günümüzde bu alandaki analitik araçların kullanımı artmış ve çok sayıda yazılım 

geliştirilmiştir. Bu yazılımları kullanmak, iklim değişikliğinin etkilerine göre kentsel 

alanlar oluşturmak için iklimi ve özellikleri hakkında kavrayışımızı geliştirecektir. 

Diğer yandan, gelişen teknoloji ile birlikte, model oluşturma ve simülasyon yapmada 

kullanılabilecek araçlar da artmakta ve gelişmektedir. Bu araçlardan biri, 
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bilgisayardaki veri bilimlerinde otomatik olarak tanınmasıyla ilgilenen bilgisayar 

bilimi dalı olan makine öğrenmesi algoritmalarıdır. Makine öğrenmesi 

algoritmalarının kullanılmasının, iklimi anlama ve öngörmede büyük avantajlar 

sağlaması hedeflenmektedir. Büyük veriye dair hesaplama gücü ve doğrusal olmayan 

davranışları yakalama, yeni veriler geldiğinde öğrenme vb. özellikleri, makine 

öğrenmesini iklimin anlaşılması ve kentsel planlamanın geliştirilmesi için uygun bir 

araç haline getirecektir. Bu çalışmada açık kaynaklı bir makine öğrenmesi algoritması 

ele alınarak, iklim parametrelerinin geleceğe yönelik tahminlerini yapmak için 

modifiye edilmiştir. Bu anlamda, bu çalışmanın amacı, iklim tahmini yapmak için 

çalışan “recurrent neural network” algoritması elde ederek makine öğrenmesi 

algoritmalarının avantajlarını ve kullanılabilirliğini göstermek, bunun üzerinden 

makine öğreniminin tasarım elemanı olarak etkin bir şekilde kullanılması üzerine ve 

iklimin anlaşılması üzerine olası durumları tartışmaktadır. 

Anahtar Kelimeler: Mimarlık, İklim, Kentsel Tasarım, İklim Değişikliği, Makine 
Öğrenmesi. 
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1. INTRODUCTION 

In the last 70 years, the growing economy and population bring the need for energy 

that mostly provided by fossil fuels (Dobbins, et al., 2015). The vast usage of fossil 

fuels brings greenhouse gases that considered the main reason for climate change. 

Climate change has direct and indirect effects on human beings through effects on 

health, water scarcity, food security, loss of habitats, deforestation, etc. (Pachauri, 

2006). As the impact area broaden, the problem becomes complex as it interests 

various disciplines as economics, sociology, architecture, engineering, geopolitics. 

How the natural and built environment will be modified by the climate change and 

features of the bilateral impacts of them on each other is in serious need of studies. 

Developing spatial technology platforms and big data offer new approaches to 

understand, evaluate, monitor, and manage urban areas which leads a changing urban 

analysis from integrated quantitative and qualitative perspectives (Boeing, 2019). In 

this sense, machine learning (ML) algorithms offer themselves as a great tool for 

processing the vast amount of data gathered in various ways and deduce useful 

information from it. In this study, a machine learning algorithm trial for predicting 

urban climate, and image process algorithm for identifying built environment have 

been utilized. 

Despite the number of studies for adapting to climate change worldwide, absolute 

success does not seem to be achievable. Furthermore, with advances in technology, 

model simulations, satellites, and observations are providing a vast amount of climate 

data (Faghmous & Kumar, 2014). Neither the human skills nor the computational 

capacity of contemporary climate science can handle the changing instruments and 

methods collecting enormous climate data which brings an increasing need for 

technological tools in studies. On the one hand, technology creates the problem and on 

the other hand, it provides the necessary tools to solve the problem. Advanced 

computing methods such as machine learning algorithms, can process the emerged 

vast amount of climate data and produce meaningful, useful information. In this 
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context, this study offers a projective tool that can enhance the understanding of 

climate and built environment relation. 

1.1 Purpose and Structure of the Thesis  

The main objective of the study is to investigate the use and benefits of two functioning 

machine learning models working with climate data and urbanization separately. For 

urban research and praxis, information management became an essential component 

and data-driven modeling and analysis of cities need data analyses as data acquisition 

and transformation, and processing data to produce useful information (Boeing, 2019). 

In this sense, long short-term memory recurrent neural network (LSTM-RNN) 

algorithm - machine learning algorithm for time series problems - is used for climate 

prediction of the region Esenboğa, Ankara. Machine learning algorithms have a great 

advantage with respect to traditional simulations since their computational power with 

big data, ability to capture nonlinear behavior, and learn as new data arrive and can 

provide significant information for the design process (Hill, O'Connor, & Remus, 

1996). The second algorithm was an image process model that uses gabor filters and 

spatial voting for identifying buildings in satellite images is used to detect the built 

environment.  

Background knowledge on climate, climate change, and its effects on built 

environment, machine learning are given under the second chapter. Then, the models 

and data used in this study are introduced and modifications to models and data are 

described in the third chapter. As a conclusion, results are analyzed, discussions and 

future works about the study are indicated in the fourth chapter. 

1.2 Method of the Study 

The purpose of the study is to develop two functioning machine learning models 

concerning the climate data and urbanization. Two independent algorithms have been 

examined and adapted to make prediction about future. It is of significance to underline 

that this study does not look for correlation or causality. The results were considered 

as a demonstration of possibilities and limitations of machine learning models in 

architecture and urban studies. The outcomes of the study are motive for further 

correlational researches. In order to achieve the purpose, proper models, satellite 
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images and climate data have been found as open-source and necessary modifications 

are done to obtain working models. 

The long short-term memory recurrent neural network is used for reading the data and 

the making the predictions, also gabor filters and spatial voting is used for identifying 

the features of buildings in order to separate and detect built environment from the 

satellite images of the Esenboğa region in order to compare the built environment and 

climate data. The data and the algorithms are taken from open sources due to 

considerations of accessibility. The climate data which involves temperature, air 

pressure, precipitation, humidity, cloud cover, etc. are read and reformatted in Matlab 

to eliminate the incompatibility for the LSTM algorithm. The process of the work is 

described under the relative titles extensively. 

1.3 Limitations of the Study 

The major limitation of the study is the lack of correlational analysis of the results due 

to lack of relevant data that could be used in both algorithms. Another limitation was 

obtaining the climate data for the Esenboğa region of Ankara which is caused by one 

of the principals of this study that is using open sources. The climatic data needed in 

this study must be long term which is a limitation in finding the data. However, the 

climate of the airport areas is recorded by various companies for many reasons, which 

became a factor for region selection in this study. Another limitation of the study was 

formatting and adapting the algorithm and data to each other to achieve a proper model 

for processing the climate data and obtaining a prediction model. Another limitation 

was detecting the buildings from satellite images to compare the climate data with built 

environment to reveal the relationship between urban climate and built environment. 

The absence of the data related to built environment requires further studies. 
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2. AN INTERDISCIPLINARY APPROACH TO CLIMATE, BUILT 

ENVIRONMENT AND MACHINE LEARNING 

Climate by itself is defined and understand as a system of very complex networks and 

the studies to discover it is still insufficient. The studies include many disciplines to 

understand the climate and foresee future impacts on earth. Built environment and 

climate studies are common and most studied topics recently since the effects of 

climate change are already seen in urban areas and expected to increase in the future. 

In addition to that, the increasing population and conducted studies show that the great 

percent of the population will begin to live in urban areas and urban areas will begin 

to expand (Haase, Frantzeskaki, & Elmqvist, 2014).  

In this context, built environment and climate as a study topic continue to enhance the 

interest and need. The complex relationship between built environment and climate 

creates a demand for complex tools to understand it which makes most of the studies 

interdisciplinary. As technology continues to develop, it offers great opportunities and 

tools to advance our studies, and as our understanding of the natural and built 

environment. Machine learning as a recently developing tool presents great 

opportunities and convenience for researches. ML has proven itself as a useful tool in 

understanding complex networks, discovering information among big data, and 

making projections on the future even in the early stages. The climate and built 

environment studies, the relation and impacts of them on each other is a very complex 

topic and requires interdisciplinary complex researches. 

2.1 Climate 

Climate is the outcome of the general circulation of the atmosphere which is affected 

by the surface and extra-terrestrial events, in other words, climate includes all major 

components of the natural environment (Atkinson, 1998). Climate has a key role in 

affecting the structure and functioning of the ecosystem globally and regionally 

(Sippel, Zscheischler, & Reichstein, 2016).  
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The basic definition of the ecosystem was first mentioned by Sir Arthur Tansley in 

1935 as biotic community or assemblage and its associated physical environment in a 

specific place, in a very simple way, an ecosystem is the sum of both biotic and abiotic 

components of natural community and their interactions (Pickett & Cadenasso, 2002). 

This definition states the ecosystem is above all an intellectual construct and both a 

physical and biological system (Gignoux, Davies, Flint, & Zucker, 2011). Ecosystems' 

scales can be any size like as small as a patch of soil supporting plants and microbes 

or as large as the entire biosphere of the Earth, and ecosystem concept is free of narrow 

assumptions; it is not restricted to equilibrium or complex or stable system (Pickett & 

Cadenasso, 2002). 

There is a pendulum of scientific thought on who controls who between ecosystem 

and climate. Depending on studies of Hayden (1998), at all scales, the climate controls 

the ecosystem and the ecosystem controls the climate; there is a bilateral relation 

between them. Emission of greenhouse gases, albedo, evapotranspiration, long-wave 

radiation, produced aerosols, and surface roughness are the main processes of the 

ecosystem that affect climate and cause it to change and also cause the climate to affect 

the ecosystem in return (Hayden, 1998). These factors generally concentrated on urban 

ecology which makes understanding the processes and foreseeing future scenarios 

vital for the future of urban areas. 

Urban ecology according to its simple definition is studying the interactions of 

organisms, built structures, and the physical environment, where people are 

concentrated (Forman, 2014). Today most people live in urban areas and urbanization 

seems to continue into the foreseeable future; 75% of the world population is projected 

to live in cities and their peri-urban surroundings in 2050 according to UN World 

Population Prospects 2012 (Haase, Frantzeskaki, & Elmqvist, 2014). The population 

size, spatial extent, a rate of growth, number, and environmental impact of urbanized 

areas are unprecedented (Forman, 2014). It is clear that the way we understand, use, 

and connect with natural resources is affected by urbanization in a most profound 

manner and urban landscape in its diverse manifestations is becoming the most 

familiar environment to the majority of the human population both currently and in 

future (Breuste, Elmqvist, Gustenpergen, James, & Mclntyre, 2011). Urban areas' vast 

populations exert significant effects on the planet, even though they cover a small 

proportion of the Earth's surface, and the impacts of urbanization on ecosystems 
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remain inadequately understood (Breuste, Elmqvist, Gustenpergen, James, & 

Mclntyre, 2011). Opposed to general opinion, the effects of urbanization to ecosystem 

and biodiversity should not be perceived as negative since the variety of human effects 

diversifies the urban environment by modifying ecosystems, as consequence to this 

modification, biodiversity in urban areas can be high (Breuste, Elmqvist, 

Gustenpergen, James, & Mclntyre, 2011). Even more, cities that are designed and 

developed using sustainability and resilience practices, can support and enhance the 

capacities of ecosystems in and around cities (Schewenius, McPhearson, & Elmqvist, 

2014). Ecologists suggest that “healthy ecosystem is one that is stable and sustainable 

while maintaining its organization and autonomy over time and its resilience to stress,” 

and that makes the incorporation of ecological knowledge and principles into the 

management and creation of cities key tool for developing healthy, livable, sustainable, 

and resilient urban ecosystems (Forman, 2014). In order to accomplish the developing 

healthy, livable, sustainable, and resilient urban ecosystems, understanding how urban 

ecosystem functions, provide goods and services, their transformation and limitations 

play a critical role (Haase, Frantzeskaki, & Elmqvist, 2014).  

The major field of interest in urban ecology studies covers the negative impacts of 

buildings and paved areas and their revegetation. The relation between built 

environment and biodiversity, however, might be considered as an evolutionary 

process. The adaptation or return of biological life to the cities is mainly welcomed 

with great enthusiasm as a kind of triumph of nature over the tyranny of humankind. 

It is of importance to investigate the possibilities and opportunities provided by 

contemporary urban environments. The relations between built environment and 

biodiversity have been studied extensively. For example, the vertical or horizontal 

vegetation of hard surfaces of traditional structures, walls, or paves have always been 

an important topic for researches or the bird population occupying high-rise buildings’ 

rooftops are on the radar of researchers for long (Lundholm, 2011). Yet, there are still 

unexplored interactions among the biotic components and new abiotic factors of the 

urban settlements. 

2.2 Climate Change and Built Environment 

In the last 70 years, the global economy has grown ten times, one billion people have 

risen out of extreme poverty, and this growth in economy and population brings the 
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need for energy with itself that mostly provided by fossil fuels (Dobbins, et al., 2015). 

According to studies, carbon dioxide concentrations have exceeded the safe limit 

which means the risk of irreversible climate change that can cause a cascade of effects 

from the individual organism to an ecosystem scale is inevitable (Beier, 2004). The 

effects of climate change not only direct to human welfare and well-being but also 

climate change has indirect effects on human beings through effects on health, water 

scarcity, food security, and loss of habitat and species (Pachauri, 2006). Since the 

impact area of climate change is broad, the problem moves beyond science and 

becomes part of the questions of economics, lifestyle, sociology, and local and global 

geopolitics (Bee, 2007). In nature, all species are elements of complex networks of 

interactions and several studies have shown that there are universal patterns in the 

interactions of species (Montoya & Raffaelli, 2010). The way the properties of those 

networks and the ecosystem are connected and how they will be modified by climate 

change is still in need of serious studies. 

Today, the global mean surface temperature is approximately 1°C warmer and by mid 

21st century Earth’s population will be approximately around 9 billion and if humans' 

reliance on fossil fuels stays at similar levels, concentrations of greenhouse gases in 

the atmosphere will have potentially significant deleterious effects (Dobbins, et al., 

2015). There are many studies for adapting to climate change worldwide, yet absolute 

success does not seem to be achievable. In the past, research methods for ecosystem 

services and urban ecology have been roughly scaled, and nowadays the use of 

analytical tools in this field has increased and a lot of sophisticated software has been 

developed (Doğa Koruma Merkezi Vakfı, 2017). Furthermore, model simulations, 

satellites, and observations are providing a vast amount of climate data that is 

increasing in terms of variety, volume, and velocity (Faghmous & Kumar, 2014). 

Neither the human skills nor the computational capacity of contemporary climate 

science can handle the changing instruments and methods collecting enormous climate 

data. 

Urban areas have a multidimensional effect on climate change so understanding their 

climatology and predicting future scenarios become an essential problem in both urban 

planning and climate change (Blake, et al., 2011). According to the World 

Meteorological Organization (1996), urbanization affects the climate in at least two 

ways; a major source of greenhouse gases and a high amount of land area used (World 
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Meteorological Organization, 1996). The effects of urbanization on climate can be 

observed more intensively in the local climate of urban areas, where urbanization has 

changed the land surface characteristics which has changed the term local climate into 

urban climate. The main effects of urbanization can be sorted as; urban heat island 

(UHI), urban water balance, urban winds, solar radiation, pollution, land-use planning, 

natural hazards in cities, energy consumption, and as a result, the greenhouse effect 

(World Meteorological Organization, 1996). Even though urban areas have the most 

effective role in climate change, according to While and Whitehead (2013) they are 

the most vulnerable areas to the effects of climate change (While & Whitehead, 2013). 

Since the difference of urban climate from rural areas, biological and physical 

components in and around the urban areas are affected by the urban climate and 

climate change (Oke, Mills, Christen, & Voogt, 2017). Naturally, urban biodiversity 

is changing with the changing climate too, where there is a lack of knowledge on the 

effects of this change in the future. 

Based on the facts about the rapid urbanization, a dramatic increase in population, and 

a decrease in the natural sources, there is a strong need for a new way of thinking and 

research concerning a new urban ecosystem triggered or facilitated by the abiotic 

sources and components of built environment. In 2030, the projected population living 

in urban areas will be %60 of the population and this urban growth combined with 

global climate change will make cities more vulnerable to urban environmental 

problems such as extreme weather and climate conditions, poor air quality, etc. (Chen, 

et al., 2012). As an outcome of the rapid growth of urban areas, urban systems will 

become an important factor in human climate interactions. Predicting future risks and 

defining mitigation strategies by understanding the regional climate affected by cities 

becomes a fundamental problem, however, there is still a lack of knowledge that exists 

in the role of climates on cities and cities on climate (Alexander, 2016). Altered 

interactions between biotic and abiotic factors due to new habits or evolution of living 

organisms in urbanized areas should be examined with considering the new and old 

construction materials and techniques. Deterioration, aging, or reactions of those new 

materials should be investigated in relation to the climate change since these factors 

have direct and indirect impacts on climate (Oke, Mills, Christen, & Voogt, 2017). If 

required data about building environment is provided, projections and predictions 
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about built environment can be achieved by a machine learning algorithm with 

precision.  

As stated in Helmut’s book (1981), cities have grown into vast conurbations where the 

future of their effects on the local atmosphere plays an important role in climate 

(Landsberg, 1981). Cities have a multidimensional effect on climate change especially 

with the urban heat island effect, in other words, the ecological phenomenon of the 

21st century is defined by cities (While & Whitehead, 2013). As stated by Popescu and 

Luca (2017), developed cities have higher temperatures than surrounding rural areas, 

and changing climate can have various causes and factors such as built environment, 

a large amount of construction materials, concentrated sunlight, etc. (Popescu & Luca, 

2017). From a general perspective, urban areas have two features that affect the 

atmosphere: urban form and urban function (Oke, Mills, Christen, & Voogt, 2017). 

The urban form has three main features that affect the atmosphere as fabric – 

determines radiative, thermal, and moisture properties of the surface, surface cover – 

relevant to the partitioning of heat, and urban structure – determines albedo and 

aerodynamic roughness and also controls radiative exchange and airflow (Oke, Mills, 

Christen, & Voogt, 2017). As a result, there is a growing interest in anticipating climate 

change in the science of urban climatology and its intersection with urban form and 

design (Corburn, 2009). Today it is known that urban and suburban settlements will 

face more frequent and intense climate extremes where forecast predictability can help 

cities prepare for those extremes since making projections for climate change is a 

fundamental step for developing strategies (Blake, et al., 2011). It is important to 

understand the climatic processes of areas before designing especially with the 

importance of climate change, in this sense, systems of monitoring and predictions 

provide important information for planning and designing (Coseo, 2013). By gaining 

information and data on climate, climate change trends can be documented and can 

give us an opportunity to design accordingly. It is clear that the future is uncertain, 

however, predictions of future change and scenarios reduce the range of possibilities 

and allow to plan long-term management more strategically (Brimblecombe & Grossi, 

2017). In reference to Oke, Mills, Christen, & Voogt, the population concentration in 

urban areas has two phases, one is complete majorly and other is still happening where 

information related to urban forms and functions as a result of the first phase are 

limited, and knowledge about cities emerging in the second phase can be considered 
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elemental (Oke, Mills, Christen, & Voogt, 2017). The knowledge acquired about urban 

climates should be applied to the design of new cities and the reconstruction of old 

ones in order to eliminate the deleterious climatic changes caused by urban areas 

(Landsberg, 1981).  

2.3 Machine Learning 

Learning is a wide range of process that is difficult to define (Nilsson, 1998). Machines 

are not intelligent by nature however, machine learning enables machines to perform 

skillfully by using intelligent software (Mohammed, Khan, & Bashier, 2017). Machine 

Learning is a statistical method considered as an alternative to a physical model of 

Earth Systems and the term machine learning means automated detection of 

meaningful patterns in data (Shalev-Shwartz & Ben-David, 2014). The history of AI 

and machine learning has started when first neural network model represented as the 

electrical circuit is introduced by neurophysiologist Waren McCulloch and 

mathematician Walter Pits in 1943, then in 1950, Alan Turing presented B-type neural 

networks and concept of a test of intelligence which is called Turing Test that for a 

computer to pass, it has to convince a human that it is a human, not a computer 

(Mohammed, Khan, & Bashier, 2017). In 1958, psychologist Frank Rosenblatt 

designed the first artificial neural network called Perceptron which was constructed 

based on biological principles and showed an ability to learn in pattern and shape 

recognition (Mayo, Punchihewa, Emile, & Morrison, 2018). Even though the success 

of studies on machine learning there was not much of progress until the late 1970s 

since the relative complexity of neural networks and the high expenses on researches, 

however, there was a growth in the research of knowledge-based systems in the period 

of 1969 to 1979 (Mohammed, Khan, & Bashier, 2017). 

The topic started to gain interest in the 1980s with developments in the discipline and 

in the 1990s, IBM developed the computer ‘Deep Blue’ which was a chess-playing 

computer that beat the world chess champion in 1997 (Mayo, Punchihewa, Emile, & 

Morrison, 2018). Today many businesses have realized that machine learning will 

increase the calculation potential and started to invest in the topic. Computer vision, 

hearing, natural languages processing, image processing, and pattern recognition, 

cognitive computing, knowledge representation, etc. constitute the main focus area of 

the current researches which aim to provide the ability to gather data through sensors 
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and then processing the gathered data by using computational intelligence tools ad 

machine learning methods to conduct predictions and making decisions at the same 

level as humans (Mohammed, Khan, & Bashier, 2017).  

Machine learning is a branch of computer science that deals with automated 

recognition of patterns from data and algorithms can be divided into four categories 

roughly: supervised, unsupervised, reinforcement learning, and neural networks and 

deep learning (Feng, Segond, Vasile, & Goz, 2016). A variety of algorithms are used 

to learn from data to improve the performance of the machine and as those algorithms 

absorb data, producing more precise models becomes possible (Hurwitz & Kirsch, 

2018). The need for machine learning is approached from two aspects, the problem’s 

complexity and the need for adaptivity (Shalev-Shwartz & Ben-David, 2014). Nilsson 

stated in his book that whenever a machine changes its structure, program, or data in 

order to improve its future performance, it learns which is a similar process to ones in 

animals and humans which makes learning in machines important for understanding 

how animals and humans learn (Nilsson, 1998). A machine learning model is the 

output generated when the algorithm is trained with data then when input is provided, 

the model generates an output based on the data that trained the model (Hurwitz & 

Kirsch, 2018). With machine learning models, internal structures of machines can be 

adjusted to produce correct outputs for a vast amount of sample inputs to constrain 

input/output fraction to reveal the relationship in the samples, the hidden relations, and 

correlations among the large data can be extracted, a large amount of knowledge about 

certain tasks can be able to be captured, the need for constant redesign due to changing 

environments can be reduced and new knowledge about tasks can be tracked easily 

(Nilsson, 1998). 

There is various type of machine learning algorithms such as regression, classification, 

clustering, non-clustering, neural networks, etc. today with respect to specifications of 

problems, yet in this study, a specific type of a neural network which is long short-

term memory recurrent neural network and ai are considered. 
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2.3.1 Neural Networks 

 
Figure 2.1 : Example of One Node of Neural Network (Nicholson, 2019). 

Networks of non-linear elements have an important role in machine learning’s 

development. The brain is a dynamic information processing system that evolves its 

structure and functionality in time through information processing at different levels 

which makes it efficient to build computational models that integrate principles from 

different information levels like in the brain for solving complex problems (Du & 

Swamy, 2013). These networks which are interconnected through adjustable weights 

are called neural networks and function very similar to biological neurons (Nilsson, 

1998). In other words, neural networks are considered as simplified models of neural 

processing in the brain. Neural networks composed of several layers that made of 

nodes that combine the input from data with a set of coefficients that either amplify or 

reduce that input with respect to the task that algorithm tries to learn (Nicholson, 2019). 

Neural networks have emerged as an alternative paradigm for computation; the 

instructions can be distributed amongst the different computing units which make 

easier to solve problems too difficult to solve by conventional mathematical models 

(Chakrabarti, 1995).  

 

Figure 2.2 : Example of Layers of Neural Network (Nicholson, 2019). 
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The operation of neural networks is divided into two stages as learning which is also 

called training, and generalization which is also called recalling (Du & Swamy, 2013). 

A neural network consists of three or more layers as, input layer that ingest the data, 

one or many hidden layers where data is modified, and the output layer based on the 

weights applied to these nodes (Hurwitz & Kirsch, 2018). When the training process 

is done, the network can be used to operate in a static manner, emulation of unknown 

dynamics, or nonlinear relationships (Du & Swamy, 2013). The learning procedure of 

a neural network can be considered as a nonlinear optimization problem for finding a 

set of network parameters that minimize the cost function for given examples. 

However, in neural networks, the solution way is not given to the computer, instead, 

it learns from observational data to figure out a solution to the problem (Nielsen, 2015). 

Neural networks are occurred as a strong alternative to traditional statistical 

forecasting methods because of the computational power with big data, capturing 

nonlinear behavior, learning as new data arrive and etc. (Hill, O'Connor, & Remus, 

1996). Since they can generate non-linear mappings during training the data, neural 

networks are convenient for real-life problems such as understanding the climate 

(Ustaoglu, Karaca, & Cigizoglu, 2008). Generating a 14-day weather forecast can 

easily take 12 hours even on fast computers where using large data with machine 

learning algorithms can compensate for lack of complex models and can give usable 

forecast with less time (Abrahamsen, Brastein, & Lie, 2018).  

2.3.2 Long Short-Term Memory (LSTM) Recurrent Neural Networks 

 
Figure 2.3 : Detailed Schematic of LSTM Memory Block (Nicholson, 2019). 
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The recurrent neural network was first developed in the 1980s with a chain-like 

structure of repeating modules as a memory to store information from previous 

processing steps (Le, Ho, Lee, & Jung, 2019). Recurrent neural networks have at least 

one feedback connection which makes network size to be compact compared to 

feedforward networks (Du & Swamy, 2013). The feedback connections enable the 

network to do temporal processing and learn sequences, e.g., perform sequence 

recognition or reproduction or temporal association or prediction. The feedback 

connections can be used by recurrent neural networks to store representations of recent 

input events in the form of activations which is a form of memory (Hochreiter & 

Schmidhuber, 1997). Recurrent neural networks (RNN) are powerful computational 

models capable of instantiating almost arbitrary dynamics (Gers, 2001). 

LSTM is a specific recurrent neural network algorithm to model temporal sequences 

and their long-range dependencies more accurately than conventional neural networks 

(Sak, Senior, & Beaufays, 2014). LSTM as an evolution of RNN is capable of learning 

long-term dependencies and remembering information for extensive periods of time 

(Le, Ho, Lee, & Jung, 2019). LSTM contains memory blocks in the recurrent hidden 

layer in addition to RNNs and these memory blocks contain memory with self-

connections storing the temporal state of the network with Gates to control the flow of 

the information (Sak, Senior, & Beaufays, 2014). LSTMs preserve the error that can 

be backpropagated through time and layers for allowing the network to learn over 

many time steps (Nicholson, 2019). These additional features provide great 

computational power and make the model remember past data and make LSTM well-

suited to classify, process, and predict time series. 

2.3.3 Artificial Intelligence (AI) and Architecture 

Technology has always directed the design parameters in history and will continue to 

do so. The digital revolution as improvements in computational power not only 

digitized the processes also rationalized them, by means of this, understanding the 

performance of space and place became much easier, and now machine learning offers 

appositeness, timeliness, scalability of solutions and new ways to study urbanization, 

speed of change, climate and population growth (Simondetti, Luebkeman, & Uerz, 

2017). Computing is one of the most important developments for professions including 

architecture hence, it becomes essential to study the implications of computing for 



 

16 
 

architecture and examine whether there are new ways of thinking about architecture, 

space, and form of built environment (Reffat, 2008). Self-learning algorithms can 

compute a great amount of data in a short period and can learn from the data to create 

new knowledge. Artificial intelligence and machine learning algorithms are bringing 

methods to unresolved challenges in almost every field and with such potential, this 

technology can reshape the architectural discipline (Chaillou, 2019). As stated in 

Cross’s study (2001), computational models of design activity have the potential of 

being descriptive models of human design behavior and attempts so far to create 

computational models have provided paradigms for understanding creative design 

activity (Cross, 2001). According to Negroponte (1969), machine-assisted architecture 

has two general concerns; large scale problems since their complexity and small-scale 

problems which are ignored by the architects (Negroponte, 1969). Researchers are 

developing various computer programs with great computing power to free designers 

to eliminate the mentioned problems. As stated in Dorst’s study, a designer needs to 

construct a design that transcends or connects the different discourses in a general 

sense or in the concrete instance of the design to be developed (Dorst, 2006). 

Development in AI can enable designers to make artworks with human-like 

sensibilities such as interacting with viewers in ways considered intelligent and 

learning by experiencing (Wilson, 1983). The many attributes of design cognition that 

are regarded as essential features of design have been identified as a result of attempts 

to simulate design activity in AI (Cross, 2001). In other words, the design process of 

a machine is very related to the design process of humans. 

Architecture has been understood as a basis for the relationship between the material 

world and their construction and the mathematics of the cosmos from the beginning of 

architectural theory (Hays, 2005). Today, most of the revolutionary works would be 

unthinkable without computers and their advantages. According to Tamke, et al. 

(2018), architecture is in a change of paradigm from architectural representations of 

unbound data to practices with a great amount of information data including urban, 

climate or 3D scanning data, whether the data is generated within the project, obtained 

by simulations or coming through sensors, in any case, the information-rich data 

expands the architectural models by including more phases of design, creating new 

scales of design concern and bringing more information from various disciplines 

(Tamke, Nicholas, & Zwierzycki, 2018). This new situation forces architects to work 
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in collaboration with other disciplines to find new methods to process the data to find 

meaningful information for a design where the machine learning concept has a great 

potential to achieve. Machine learning algorithms can change the design paradigms by 

processing the overwhelming amount of data and create information to be used in the 

design process. As stated by Thomsen (2016), building culture enters a rethinking era, 

and developing fundamental infrastructures for unknown practices should be preferred 

to common standards for known practices (Thomsen, 2016). 

2.4 A Projective Tool for the Climate Change Impacts on Built Environment 

Today machine learning is recognized as a powerful tool and many fields have begun 

seeking input from it (Rolnick, et al., 2019). In climate researches, machine learning 

is used for various objectives as making predictions, reading big data, discovering 

dependencies in data provided, replacing of components of large climate models with 

machine learning models with lower computational cost and the variety of the objects 

of the machine learning and its models with variant functions make the ML useful tool 

for understanding the complex system as climate. Machine learning can enable 

monitoring the gathering data of built environments, deforestation, carbon emission, 

energy consumption, and related topics by remote sensing and it can contribute to 

scientific discoveries about climate change and relation to the built environment 

(Rolnick, et al., 2019). Machine learning is a tool that enables other tools across 

various fields and can lead to interdisciplinary methodological innovations in the 

climate and built environment studies. The information about the correlation of climate 

and built environment that can be gathered from machine learning models can be 

crucial in urban planning, ecology, architectural researches and with such projective 

tools, a basis can be effectuated for future researches in the future. 

In this study, LSTM neural network model is used for climate prediction. The LSTM 

model is selected in this study to predict the climate parameters since the model’s 

computational power with large data and its ability to cope with the correlation within 

time series which is a series of data points indexed in time order. The model is selected 

amongst open-source models for predicting stock price and reformatted to fit for 

climate prediction from the website Github 

(https://github.com/DarkKnight1991/Stock-Price-Prediction). Adaptations towards to 

working model for climate are done on both climate data and model. 
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Another advantage of the model is that it is open to development and to the integration 

with other models. In this study, simple predictions based on every climate parameter’s 

own historical data in the selected region of an urban area are done and results have 

shown the success of the model.  
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3. MODELS AND METHOD 

“All models are wrong, but some are useful.” 

     George Box (Knutti, 2019). 

There are many different types of climate models according to their complexity from 

zero-dimensional models to very complex models which can be run by only a few 

supercomputers therefore which type one should use and what parameters must be 

driven depends on what is wanted to be learned, and thus the scale and prioritization 

of model should be based on the question of interest (Snyder, Mastrandrea, & 

Schneider, 2011). Besides this, since the complex models require too much 

computational power, on long time periods or with a large number of experiments, 

using simple and fast models is necessary, yet more designing a model with important 

properties to meet the requirements of the question of interest can be more elucidative 

(Goosse, Barriat, Lefebvre, Loutre, & Zunz, 2015). Climate models have a scale of 10 

km to 50 km generally, however, to get more specific knowledge about climate events, 

the scale of a few kilometers is needed, yet smaller scales mean larger computing 

powers (Knutti, 2019). To develop useful predictions from computationally feasible 

and more accurate models, the big climate data needs to be condensed into coherent, 

computationally operationalizable modes (Rolnick et al., 2019). Machine Learning 

models are likely to be more operational and less expensive to work with. 

Climate is simply the description of the long-term pattern of weather in a specific area 

also it is defined as average weather for a specific region and time period (Atkinson, 

1998). Yet this basic definition is not capable of highlighting the complexity of the 

climate. Climate is the outcome of the general circulation of the atmosphere which is 

affected by the surface and extra-terrestrial events where we can say that climate 

includes all major components of the natural environment (Atkinson, 1998). The 

scientists look at averages of precipitation, temperature, humidity, sunshine, wind, fog, 

frost, and such phenomena that occur over a long period to understand the climate 

(Gutro, 2005). The Earth's climate changes in response to natural and anthropogenic 



 

20 
 

drivers, so the past and the future of the earth’s climate becomes unstable (Hayhoe, et 

al., 2017). This instability in Earth’s climate makes it infeasible to derive what can 

happen in the future based on just the observation of the past, and the only tools- can 

tell what may happen in the future- that science has in its hands are climate models 

(Jancovici, 2007). A climate model can be defined as mathematical equations based 

on physical, chemical, and biological principles to replicate the climate system 

(Goosse, Barriat, Lefebvre, Loutre, & Zunz, 2015). These numerical solutions can 

support observed climate data by reanalyzing and showing how climate responds to 

different forces such as solar radiation, greenhouse effects, and so on (Abiodun & 

Adedoyin, 2016). The climate models are necessary for an understanding of the 

climate system process properly and for identifying the effects of human influences on 

climate change (Carson, 1996). The ideal climate model should involve all processes 

known to have climatological consideration and should include spatial and temporal 

details to model phenomena that occur over small regions and short time periods, in 

other words, models should include all the relevant scales of processes and interactions 

within the climate system, including the various subsystems, their nonlinear behavior 

and their connections throughout the whole system, yet even today’s best models still 

require compromises and approximations due to computational complexity and lack 

of knowledge on many small-scale processes and they drive large-scale processes 

(Snyder, Mastrandrea, & Schneider, 2011). Generally, each component of the climate 

model can be run separately or coupled to other components, the most preferred 

versions are coupled climate models (Gettelman & Rood, 2016). 

All climate models are basically an attempt to represent the processes that produce 

climate and to understand the functioning of the climate system. The most important 

objective of climate models is predicting the effects of changes and interactions in the 

climate system (McGuffie & Henderson-Sellers, 2005).  

3.1 Models Used in the Study 

3.1.1 LSTM Neural Network Model 

The open-source code for LSTM neural network which is originally modeled for 

predicting stock price for companies is accessed from the open-source website Github 

(Nayak, Stock-Price-Prediction, 2019). Also, the image process model for identifying 
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the features of buildings in order to detect the built environment from satellite images 

is acquired from the open-source website Matlab (Sirmacek, File Exchange, 2018). 

The working principle of the algorithm is analyzed and reformatted with respect to the 

climate data obtained from the company Raspisaniye Pogodi Ltd., St. Petersburg, 

Russia. Data is divided into two sets: train and test sets. The training set contains 80% 

of the data and the test set contains the rest 20%. After dividing the data into two sets, 

the LSTM model is created for the simulation and trained to get outputs. Model trains 

the data in training set for finding a pattern within to make a prediction. After finding 

the pattern, the model tries to predict the test set and compare the actual value with the 

predicted value; the difference between the real value and predicted value gives the 

model error. The lesser the model error, the more accurate predictions it makes. 

3.1.2 Image Process for Building Detection Model 

The image process model is also studied and reformatted with respect to used satellite 

images in this project. The model uses gabor features and spatial voting in order to 

identify the features of the built environment for detecting the buildings from satellite 

images. Gabor features extract local pieces of information in order to combine them to 

recognize an object or region of interest (Kamarainen, 2012). After extracting the local 

features and their descriptor vectors which are mathematical representations of the 

features, the model uses them to generate a voting matrix such that each descriptor 

votes to possible building locations and its certain proximity (Sirmacek & Unsalan, 

2009). The building locations are identified by maximum votes in the voting matrix. 

In figure 3.1, the results of the gabor filtering applied to satellite image can be seen, 

after extracting the gabor features of the image, with spatial voting the buildings in the 

image are identified among the gabor features as in figure 3.2.  
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Figure 3.1 : Gabor features of the satellite image of Esenboğa region. 

 

 

Figure 3.2 : Detected buildings from satellte image of Esenboğa region after spatial voting. 
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Figure 3.3 : Built environment detected from satellite image of Esenboğa region. 

The built environment in the image is identified through the detected buildings by 

spatial voting as in figure 3.3 and the boundaries of the built environment are shown 

on the satellite image.  

3.2 Data Used in the Study 

The climate data for Esenboğa, Ankara is founded by the company Raspisaniye Pogodi 

Ltd., St. Petersburg, Russia. The company has a license for activity in 

hydrometeorology and adjacent fields (Raspisaniye Pogodi Ltd., 2004). Location is 

selected according to available data for the maximum time interval possible. Since 

Esenboğa, Ankara contains the airport of the city, available data is much more than 

other regions of the city. The daily climate data of Esenboğa, Ankara for the years 

2005 to 2019 is obtained from the website of the company, 

https://rp5.ru/Weather_in_the_world. The data contains;  

• minimum, maximum and average temperatures,  

• atmospheric pressure at weather station level,  

• atmospheric pressure reduced to mean sea level,  

• pressure tendency,  

• relative humidity,  

• mean wind direction,  
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• mean wind speed at a height of 10-12 meters above the surface, 

• maximum gust value at a height of 10-12 meters above the surface, 

• total cloud cover, 

• clouds of genera Stratocumulus, Stratus, Cumulus, Cumulonimbus, 

• amount of all the clouds present, 

• height of base of the lowest cloud, 

• clouds of the genera Altocumulus, Altostratus, Nimbostratus, 

• clouds of the genera Cirrus, Cirrocumulus, Cirrostratus, 

• horizontal visibility, 

• dewpoint temperature at a height of 2 meters, 

• amount of precipitation, 

• the period of time during which the specified amount of precipitation was 

accumulated 

• state of the ground without snow or measurable ice cover, 

• the minimum soil surface temperature at night. 

Some of the climate data have no continuity between the years 2005 and 2019, so the 

simulation for those parameters has not been run since the output could not be accurate. 

Data used for the simulation are temperatures, atmospheric pressure at weather station 

level, atmospheric pressure reduced to mean sea level, relative humidity, horizontal 

visibility, dewpoint temperature, amount of precipitation, amount of all the cloud 

presents. Data graphics of the concerned climate parameters are given below: 

 

Figure 3.4 : Temperature and Dewpoint Temperature Data. 
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The graphs are showing the maximum, minimum, and average value of daily 

temperature and dewpoint temperature. A pattern can be seen roughly on the data yet 

the small changes due to climate change cannot be seen by the eye. 

 
Figure 3.5 : Atmospheric Air Pressure and Atmospheric Air Pressure Reduced to Sea 
Level Data. 

The graphs are showing the maximum, minimum, and average value of daily 

atmospheric air pressure and atmospheric air pressure reduced to sea level. In those 

data, a pattern as seen in temperature data cannot be seen easily which makes it hard 

to analyze the data by hand. 

 

Figure 3.6 : Relative Humidity and Precipitation Amount Data. 

The graphs are showing the maximum, minimum, and average values of daily relative 

humidity and precipitation amount. In these data, a pattern can be seen in relative 

humidity yet in precipitation amount, it can be said that there is no pattern. 
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Figure 3.7 : Cloud Cover and Vertical Visibility Data. 

The graphs are showing the maximum, minimum, and average values of daily cloud 

amount and the vertical visibility distance. Data of both parameters have no pattern as 

can be seen in graphs which makes it hard to analyze the data by conventional methods. 

3.3 Formation and Adaptation Method 

The model and the data were not able to be used together in the first place. To remove 

this incompatibility, some modifications are applied to both of them. Even so, there 

were still some errors in the results such as overfitting and underfitting. After 

compatibility problem was solved, modifications to the algorithm were considered to 

increase the accuracy of the results while avoiding overfitting. 

Matlab is used for formatting the climate data in order to determine the maximum, 

minimum, and average values for climate parameters and saved as text files as an input 

to the machine learning algorithm. The algorithm is revised in order to work with 

climate data by testing the algorithm each turn to check the consistency of output and 

the test set. 

3.3.1 Formation and Adaptation of Data Used 

All of the data is read and reformatted in Matlab to get them into a proper format for 

simulation. Data were taken every 3 hours every day which makes 8 measurements for 

every day, therefore, in Matlab, the minimum, maximum, and average measurements 

of every climate parameter for every day are calculated. Initially, there were 43,528 

data at total and after reformatting the data as explained before, there were 5,441 data 

of every climate input for the simulation from 02.02.2005 to 27.08.2019. After 
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formatting the data, it is read and analyzed by plotting from the algorithm and checked 

if there are any null values to interrupt the simulation. 

The data is divided into the train set and the test set for checking the algorithm’s 

accuracy. The data is normalized by MinMaxScaler from Sci-kit Learn which is a 

module in python for machine learning. Normalization helps the algorithm in 

converging to find local/global minimum efficiently. Then data is converted into time-

series and supervised learning problems and divided into two sets; train set and test 

set. The train set is used for finding the pattern within the data and the test set is used 

for validating the found pattern. The prediction for all parameters is done with respect 

to their daily minimum, maximum, average values, and the building number of the 

region. This makes the model as simple as possible since no other dependencies 

involved in computing. Also, real-life data contains the dependencies in itself already 

just like temperature changes are the result of parameters it depends on. In other words, 

each climate parameter consists of other parameters, since the climate is a form of 

complex networks of interactions. This means, the historical data of each parameter 

actually contains the dependencies to other parameters and as the algorithm trains the 

data and find a pattern within it, it actually trains the dependencies too. In addition to 

that, building number is given as input to the algorithm besides the historical data of 

climatic parameter. 

3.3.2 Formation and Adaptation of Algorithms Used 

3.3.2.1 Formation and Adaptation of LSTM Neural Network for Climate 

Prediction 

After formation, climate data is used in the model to modify the algorithm’s 

parameters. These parameters are batch size, epoch number, timesteps, the dropout 

rate of the model. The adaptation of parameters is obtained by trying the model with 

various values for getting the minimum error value. The batch size of the train data, 

timesteps of the algorithm, epoch number, and the dropout rate is rearranged for the 

climate prediction. Batch size is the number of samples the neural network sees before 

it updates internal model parameters, timesteps is the number of units back in time the 

network sees, epoch defines the number that the model will run across the entire 

training dataset and dropout is a regularization method during training a network where 
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input and recurrent connections to model units are probabilistically removed to reduce 

overfitting.  

Adjusting those parameters allows us to modify the network’ s compatibility with the 

climate data. As can be seen on the graphs provided, before adjusting the network’s 

parameters, the results had high error value and predictions of test set were not 

accurate. After adjusting the network’s parameters to work suitable with climate data, 

the error value of the model has decreased, and the predictions of test sets became 

accurate.  

3.3.2.2 Formation and Adaptation of Image Process for Building Detection 

In the image process algorithm, the great changes and adjustments are not needed in 

order to obtain accurate results since the algorithm was already created for identifying 

the built environment from satellite images. The satellite images of the region 

Esenboğa are obtained from software program Google Earth with respect to years and 

then inserted into the image process algorithm to adjust the filter coefficients properly. 

The algorithm is working with 88.17% accuracy in satellite images in identifying 

buildings (Sirmacek & Unsalan, 2009). The coefficients of the gabor filter of the 

algorithm for extracting the gabor features are adjusted with respect to satellite image 

properties such as if the image is bright, dark, cloudy, etc. in order to obtain the best 

accuracy in obtaining the buildings. 

  

Figure 3.8 : Detected buildings from satellite image of Esenboğa region in cloudy day 
before and after adjusting the image. 

As can be seen in figure 3.8, adjusting the image properties and filter coefficients of 

the algorithm enhances the identifying buildings form the satellite image greatly. 

The obtained building numbers are given as input to the climate prediction algorithm 

in order to train the climate data with respect to the built environment. Since there are 
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not enough satellite images as climate data, the changes in building numbers between 

the years that satellite images taken are distributed linearly. 

3.4 Results 

3.4.1 Results of Climate Prediction Model 

The high errored results and adopted low errored, more accurate results are given 

below to show that the model’s success at predicting the climate measurements. As 

can be seen on result graphics, training of the model has been succeeded. 

 

Figure 3.9 : Temperature Data and Building Number. 

 
Figure 3.10 : High Errored Temperature Prediction Model Loss and Comparison of Real 
and Predicted Data. 
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Figure 3.11 : Low Errored Temperature Prediction Model Loss and Comparison of Real 
and Predicted Data. 

As can be seen in the first set of graphs, there is a high model loss while training the 

data which resulted in unsuccessful prediction. The model loss was 0.008234 which is 

relatively high and resulted in predicting lower values than real data. After adopting 

the algorithm to predict more precisely, the model loss has decreased to 0.001474 and 

the effect of the adaptation can be seen on the second set of graphs. The prediction of 

the test set has improved, and accuracy has increased.  

 

Figure 3.12 : Relative Humidty Data and Building Number. 
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Figure 3.13 : High Errored Relative Humidity Prediction Model Loss and Comparison of 
Real and Predicted Data. 

 
Figure 3.14 : Low Errored Relative Humidity Prediction Model Loss and Comparison of 
Real and Predicted Data. 

As can be seen in the first set of graphs, there is a high model loss while training the 

data which resulted in relatively unsuccessful prediction. The model loss was 

0.0119876 which is high and resulted in a noisy prediction. After adopting the 

algorithm, the model loss has decreased to 0.0077957 which can be high for 

temperature data yet low for relative humidity and the effect of the adaptation can be 

seen on the second set of graphs. The prediction of the test set has improved, and 

accuracy has increased.  
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Figure 3.15 : Atmospheric Air Pressure Data and Building Number. 

     
Figure 3.16 : High Errored Atmospheric Air Pressure Prediction Model Loss and 
Comparison of Real and Predicted Data. 

  
Figure 3.17 : Low Errored Atmospheric Air Pressure Prediction Model Loss and 
Comparison of Real and Predicted Data. 

As can be seen in the first set of graphs, there is a high model loss while training the 

data which resulted in underfitting prediction. The model loss was 0.0048609 which 

is relatively high and resulted in predicting in smaller range than real data. After 
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adopting the algorithm, the model loss has decreased to 0.0024675 and the effect of 

the adaptation can be seen on the second set of graphs. The prediction of the test set 

has improved, the range of the prediction increased. 

 

Figure 3.18 : Dewpoint Temperature Data and Building Number. 

  
Figure 3.19 : High Errored Dewpoint Temperature Prediction Model Loss and 
Comparison of Real and Predicted Data. 

  
Figure 3.20 : Low Errored Dewpoint Temperature Prediction Model Loss and 
Comparison of Real and Predicted Data. 
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As can be seen in the first set of graphs, there is a high model loss while training the 

data which resulted in prediction lower than real data. The model loss was 0.0061642 

which is high. After adopting the algorithm to predict more precisely, the model loss 

has decreased to 0.0040465 and the effect of the adaptation can be seen on the second 

set of graphs. The prediction of the test set has improved, and accuracy has increased.  

 

Figure 3.21 : Atmospheric Air Pressure Reduced to Sea Level Data and Building Numbers. 

 

 
Figure 3.22 : High Errored Atmospheric Air Pressure Reduced to Sea Level Prediction Model 
Loss and Comparison of Real and Predicted Data. 
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Figure 3.23 : Low Errored Atmospheric Air Pressure Reduced to Sea Level Prediction 
Model Loss and Comparison of Real and Predicted Data. 

As can be seen in the first set of graphs, there is a high model loss while training the 

data which resulted in unsuccessful prediction. The model loss was 0.00050157 which 

is high and resulted in predicting higher values than real data. After adopting the 

algorithm, the model loss has decreased to 0.00041918 and the effect of the adaptation 

can be seen on the second set of graphs. The prediction of the test set has improved, 

and accuracy has increased as the prediction gets smaller with respect to the high error 

set.  

 

Figure 3.24 : Cloud Cover Amount in % Data and Building Number. 
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Figure 3.25 : High Errored Cloud Cover Amount in % Prediction Model Loss and 
Comparison of Real and Predicted Data. 

 
Figure 3.26 : Low Errored Cloud Cover Amount in % Prediction Model Loss and 
Comparison of Real and Predicted Data. 

As can be seen in the first set of graphs, there is a high model loss while training the 

data which resulted in unsuccessful prediction. The model loss was 0.053542 which is 

high and resulted in predicting higher values than real data. After adopting the 

algorithm, the model loss has decreased to 0.0399108 and the effect of the adaptation 

can be seen on the second set of graphs. The prediction of the test set has improved, 

and accuracy has increased as the prediction gets smaller with respect to the high error 

set.  
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Figure 3.27 : Precipitation Amount in mm Data and Building Numbers. 

  
Figure 3.28 : High Errored Precipitation Amount in mm Prediction Model Loss and 
Comparison of Real and Predicted Data. 

  
Figure 3.29 : Low Errored Precipitation Amount in mm Prediction Model Loss and 
Comparison of Real and Predicted Data. 

As can be seen in the first set of graphs, there is a high model loss while training the 

data which resulted in unsuccessful prediction. The model loss was 0.00332518 which 

is high and resulted in predicting higher values than real data. After adopting the 

algorithm, the model loss has decreased to 0.00252567 which has a positive effect on 
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the prediction as can be seen on the second set of graphs. The prediction of the test set 

has improved, and accuracy has increased. 

3.4.2 Results of Image Process for Building Detection 

In order to compare the built environment and climate parameters, building numbers 

obtained from satellite images by machine learning algorithm is compared with 

climatic parameters with respect to years. By using an algorithm developed for image 

processing to detect buildings roofs by gabor filters and spatial voting, the number of 

built structures around the studied area is detected. The algorithm uses the gabor filter 

set to extract local features representing building properties and with spatial voting 

matrix, it detects the building locations in the image.  

  

Figure 3.30 : Esenboğa Territory, 2002-4-15 and 2019-3-30. 

 

  
Figure 3.31 : Esenboğa Territory 2, 2002-4-15 and 2019-3-30. 
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Figure 3.32 : Esenboğa Airport, 2002-4-15 and 2019-3-30. 

The figures show the detected building in the Esenboğa region by image process 

algorithm between the years 2002 and 2019. 

The algorithm for image process to detect buildings by gabor filters and spatial voting 

is used for detecting the buildings in the satellite images. The open-source algorithm 

is obtained from the website of Matlab and the parameters are rearranged for the 

images used in this study (The MathWorks, Inc., 2018). The model used gabor features 

and probability to detect the buildings and urban regions (Sirmacek, Urban Region and 

Building Detection Using Gabor Features and Probability, 2018). As can be seen from 

figures 3.30, 3.31, and 3.32, there is an increase in the building number as in the density 

of the built area which has possible effects on the region’s climate.  

 

Figure 3.33 : Detected Buildings and Weekly Temperature Averages. 

The graphs show that with increasing building numbers, the temperature of the region 

reacts as narrowing down the maximum and minimum temperatures observed. 
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Figure 3.34 : Detected Buildings and Weekly Precipitation Amount in mm. 

The graphs show that precipitation amount reacts to the increase in building number 

with a decrease. Despite the decrease in the total amount of precipitation, there is an 

increase in the amount of precipitation in one go. 

The obtained graphs of comparison between the built environment and climatic 

parameters in figure 3.33 show that there is no significant change in the maximum 

temperature observed where there is an increase in the minimum temperature which 

causes the diurnal temperature range (DTR=Tmax - Tmin) to decrease. In the study of 

Sensoy, et al., correlative results are obtained for Ankara as urban heat island effects 

mostly the minimum temperature of the urban area that causes a decrease in the frost 

days in the city (Sensoy, et al., 2015). The former studies about effects of urban heat 

island on temperature for Granada, urban areas in the United Kingdom and Armagh 

have shown that UHI (urban heat island) effect is maximized at night which affects 

the minimum temperature observed (Montávez, Rodriguez, & Jimenez, 2000; 

Coughlin & Butler, 1998; Goddard & Tett, 2019). The results of the study of 

Montávez, Rodriguez, and Jimenez (2000) in Granada has shown that the long 

temperature series have been affected by urban climate modifications as large increase 

in minimum temperature and a small decrease in maximum temperature which in 

relation with geometry and topographic conditions of the city. In the study of Goddard 

and Tett (2019), the results have shown that urban heat island impact is maximized 

during the night which causes an increase in minimum temperature observed in 

weather stations around urban areas in the United Kingdom since the absorbed heat by 
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urban structures re-radiates back into the atmosphere (Goddard & Tett, 2019). Similar 

results have been obtained by Coughlin and Butler for Armagh (1998) as a 0,11°C 

increase in daily maximum temperatures and 0.41°C increase in daily minimum 

temperature in the site of the observatory (Coughlin & Butler, 1998). Another study in 

the Beijing-Tianjin-Hebei region by Ai, et al. (2019) shows that the region’s ground 

albedo between 1993 and 2010 had diverse values mainly because of suburban areas 

which cause an increasing trend in mean temperatures of urban and suburban areas. 

Also, the graph of precipitation and built environment in figure 3.34 shows that there 

is a decrease in precipitation amount yet increase in the intensity of heavy rainfall 

which means a risk of a flood as in the study of Wilby (Wilby R. , 2007). In the study 

of Zhang, et al. (2007), the analyses showed that summer and annual precipitation in 

Greater Beijing area have decreased with urbanization since 1981 by more than 40 mm 

per year and they stated that urbanization with larger heat capacity and less available 

water for evaporation produces smaller latent heat flux, higher surface temperature 

larger sensible heat fluxes and a deeper boundary layer which all resulted as a decrease 

in rainfall for Beijing area (Zhang, Chen, Miao, Li, & Xuan, 2007). 

The coherence of the analyses in this study with the mentioned studies above shows 

that urbanization of the study area, even though it is still a suburban area, shows its 

possible impacts on the local climate. These results emphasize the need for further 

studies on bilateral relation of built environment and climate, and future projections’ 

importance as design input for urban design. 

3.4.3 Forecasts 

Forecasts based on the trained model has been made for 6 months in order to see the 

trained model’s ability to forecast the future. After 6 months the forecasts increased 

the error and started to converge to different a constant value for each parameter’s 
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forecast. However, in a period of six months, forecasts seem to accurate with respect 

to real data.  

 

Figure 3.35 : Forecast of Temperature. 

In the figure of the forecast of temperature, the model forecasted the temperature 

values for 6 months accurately. However, after 6 months, the model started to decrease 

its accuracy and converge to a constant value. 

 
Figure 3.36 : Forecast of Humidity. 
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The forecast of the humidity based on the trained model has also made a forecast for 

6 months in an acceptable range. After the six months, forecasts converge to a constant 

value like in temperature forecast. 

 

Figure 3.37 : Forecast of Air Pressure. 

The figure shows the forecast of the air pressure for 6 months has been made with 

the trained model. The results are similar to previous data which suggests that the 

forecast is in an acceptable range. 

 

Figure 3.38 : Forecast of Precipitation Amount. 
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The forecast of the precipitation amount is given in the figure. Results are deemed to 

be similar to previous data however, the accuracy of the forecasts cannot be determined 

precisely.  

 

Figure 3.39 : Forecast of Dewpoint Temperature. 

As in the previous forecasts, the dewpoint temperature forecast achieved with 

similarity to previous data with the trained model. The convergence to constant value 

after 6 months can be seen from the figure. However, the forecast for the 6 months 

seems accurate.  

 
Figure 3.40 : Forecast of Cloud Amounts in %. 
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The forecast of the cloud amount for 6 months is given in the figure above. The forecast 

is compatible with the real data as forecast data show a similar pattern with real data. 

 

 
Figure 3.41 : Forecast of Building Numbers of Esenboğa Territory. 

The forecast of the building number of Esenboğa territory is given in the figure. 

Figures suggest that the building number would continue to increase rapidly in the near 

future. This situation also indicates the importance of the projection studies of the built 

environment and climate relationship.  

The forecasts are done for 6 months since the accuracy of the model starts to decrease 

and the forecasts converge to constant values. The main reason behind this error is the 

forecasts are done with respect to a small amount of data and after the first forecasts 

are done, forecasts are done with respect to forecasts model just made. With every 

forecast made, the model’s error increases. After a time, the error is maximized, and 

the accuracy of the forecast decreased. However, for 6 months, forecasts are 

compatible with real data as forecast data shows a similar pattern with real data. The 

forecasts need further studies in order to develop accuracy and extend the time span.  
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4. CONCLUSION 

4.1 Analyses of the Results 

Both climate prediction and image process algorithms work accurately with proper 

adjustments as can be seen from figures given in chapters 3.4.1 and 3.4.2. The image 

process algorithm has brought out the urbanization of region Esenboğa. According to 

the graphs given in figure 3.33 and figure 3.34, the study is consistent with the studies 

conducted by – Sensoy (2015), Montavez, Rodriguez and Jimenez (2000), Coughlin 

and Butler (1998), Goddard and Tett (2019), Wilby (2007) – in the past. In order to 

understand the relation of the climate and built environment, similar studies should be 

conducted with several areas with different urbanization levels to compare the results 

with each other. 

As the graphs of the results shown, model adaptation to climate data has been achieved. 

Predictions depending on historical data of each parameter and building number of the 

region were sufficient for the accuracy in the neural network model. The results have 

shown that LSTM is considered as a useful tool for predicting the climate for a 

suburban area. It has great potential to improve urban design and understanding urban 

climate. Predicting the climate depending on the parameters of historical data and 

building numbers can reveal the future scenarios for urban areas’ transformation and 

can provide important information for the design process. Projecting the impacts of 

the built environment on climate and creating possible future scenarios are possible 

with the tool developed in this study which can provide new design concerns, also it 

can serve as an information source for future studies in the built environment and urban 

climate. 

The results of LSTM model for Esenboğa, Ankara are obtained by running the model 

for temperature, relative humidity, air pressure, dewpoint temperature, precipitation 

amount, air pressure reduced sea level, vertical visibility, cloud cover. The results are 

provided to show that with simple adaptation, the LSTM model can provide valuable 

results and, to a certain extent, predictions about urban climate. The optimal outcomes 
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are chosen with respect to the minimum error value of the model and for showing the 

improvement of the model, results with high error value are also provided to clarify 

the adaptation process of the model. The simulations show that the machine learning 

algorithm makes urban climate prediction based on the statistical data of climate 

parameters and building numbers.  The results can help to understand the impacts of 

the built environment on urban climate with further studies. The results suggested that 

there is a need for advanced studies on the relation between the built environment and 

climate of the area. 

The forecasts are done for 6 months due to errors in long time spans. The error 

increases as the forecast span increased and the model converges to a constant value. 

The model needs further developments in order to expand the forecast amount, 

however, the forecasts done in this study has given a clue about the how machine 

learning models can contribute to built environment design by forecasting the possible 

future climate. 

The comparison of the built environment and climate data as in figure 3.33 and figure 

3.34 shows that there is a need for further studies in order to reveal the possible relation 

between climate and the built environment. Results are consistent with studies on the 

impact of the built environment on climate – Sensoy (2015), Montavez, Rodriguez and 

Jimenez (2000), Coughlin and Butler (1998), Goddard and Tett (2019), Wilby (2007) 

– which emphasize the importance of projective tools that discover the relation 

between the built environment and climate. 

4.2 Discussions 

Since the second half of the 20th century, the urban population has been growing 

rapidly, from 751 million to 4.2 billion, particularly in Asia, and Africa (United 

Nations, 2018). The increase in the built environment, eventually, increased awareness 

about urban biodiversity. As comprising complex spatial mosaics, urban areas have 

their ecological dynamics and ecosystem services that accommodate a wide range of 

species (Wilby & Perry, 2006). Whitford et al. (Whitford, Ennos, & Handley, 2001) 

underlined that urban ecologies have altered climatic conditions, biogeochemical 

fluxes, air quality, patterns of streamflow, different channel geomorphologies, and 

temperature regimes. Climate change, in return, has become the major pressure on the 

ecosystem functions, species composition, and spatial distribution, especially because 
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of the global changes in sea level, disturbances in water regimes, biological 

interactions, and atmospheric compositions (Wilby & Perry, 2006). Thus, it is of 

ultimate importance to study urban ecosystems, climate change, and urban biodiversity 

together and in relation to each other. Therefore, impacts on biodiversity at a landscape 

level should be involved in decisions related to urban developments (Balfors, 

Mörtberg, Gontier, & Brokking, 2005). The model systems in small-scale, spatially 

delimited have been widely used to understand the link between biodiversity and the 

ecosystem (Bullig, White, Raffaelli, & Pierce, 2006). In this sense, the model achieved 

here can be modified to understand the relation of the biodiversity and the urban 

ecosystem to brighten our understanding. 

According to Tamke and Thomsen (2018), with the development of building 

information models and shared classification systems, architecture has adopted digital 

design technologies that allow it to collaborate strong interdisciplinary relations and 

to pass the information along the design process (Tamke & Thomsen, Complex 

Modelling, 2018). These developments can be considered successful in existing 

architectural practice, yet the digital design process needs to be reconsidered in order 

to achieve new methods for engaging the environment. Concordantly, machine 

learning offers a great potential to increase optimization, automation, prediction, and 

innovation in almost every discipline in spite of being in early stages (Khean, Fabbri, 

& Hausler, 2018). Machine learning offers itself as a great tool for designers that can 

handle a vast amount of data and reveal information that can change the design 

approach. In this context, a tool developed in this study can provide climate 

information for urban areas as input in the design process and can be modified to work 

in from a single building scale to the whole city scale. The simulations of climatic 

parameters are done with respect to each parameter’s historical data and the building 

number through years so that the climate of the urban area selected in this study can 

be predicted based on the built environment. Simulating the climate with building 

numbers can provide useful information as an input for the design processes of the 

developing urban areas or transformation of current urban areas for a more sustainable 

and resilient urban environment. Also, with the proper data, it can predict the possible 

effects on buildings and provide information such as façade, surfaces, energy 

consumptions, material deformation, user interactions, the life span of the building, 

etc.  
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Architecture is always in close relation with the technology of the time, and it benefited 

and will continue to benefit from the technology directly or indirectly. The 

advancements in technology proved that in every discipline as a built environment and 

people that inhabit it, there is a vast amount of data that needed to be studied (TMD 

Studio Ltd., 2017). Today architecture has more access to data that helps gauge the 

best material and designs, big data does not make architecture absolute, instead, it 

transforms the discipline (Patterson, 2019). Data-driven design can evaluate high-level 

concepts by gathering data through sensors, surveys, and various ways, then feeding 

this data to machine learning systems to predict the designs that deserve further study 

(Muklashy, 2018). The ability to process big data of machine learning algorithms will 

help architects to understand how the city will flow and how the ecosystem will coexist 

so it will force a rethinking of traditional models. In this sense, the tool tested in this 

study is a trial for how machine learning algorithms can help us to understand the urban 

climate and built environment and how they can provide information for designs. 

4.3 Future Works 

Urban microclimate has a significant impact on the heat exchange for buildings 

depending on geometries and constructions (Dorer, et al., 2013). Understanding the 

urban climate in the single building scale and the effects of it on the biotic and abiotic 

environment of itself can provide great information for further studies on the 

ecosystem and urban design in different scales. Achieved a working network for 

climate data in this study will be developed with respect to these concerns. Parameters 

such as the material of the building, carbon emission, size of the building, etc. can be 

implemented into the model and can be emerged with other parameters. The number 

of parameters simulated will be increased with regard to urban ecosystem inputs. In 

addition to that increase, the dependency among the parameters will be defined, and 

the results will be shown on the map to visualize the simulation as clarifying the 

understanding of the model’s possible contribution to urbanizing. As the parameter 

amount increases, the scale of the simulation will be changed from a single building 

to a whole city scale to remark the effects of micro-climate on urban climate. 

Parameters will be bond together and will be bond with urban parameters such as 

building structure, total building number, building material, population, traffic density, 

etc. for understanding the climate and the effects of it more clearly on urban areas. 
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According to Walliss and Toh, there is a warning against a one-size-fits-all approach 

to climate change mediation by researchers (Walliss & Toh, 2016). Machine learning 

algorithms can help us to understand the climate’s complex network of interactions 

and also can help us to find a multi-size approach to climate change. The micro-climate 

influence and be influenced by the development thus, simulations in this study are 

made for micro-climate of Esenboğa, Ankara to gain the spatial and accuracy 

advantages. Swapan stated that understanding the microclimatic factors can help to 

achieve better urban design since traditional methods of urban design cannot fulfill the 

needs (Swapan, 2016). At present, nearly 50 percent of the population lives in cities, 

and this number is expected to increase to more than 70 percent over the next 50 years 

and this extra population that will occur in cities will make suburban areas developed 

(Wilby R. L., 2007). The economic and social reasons make suburban areas attractive 

for a new population in cities and these areas are most wasteful of all environments 

since they require an excessive amount of land, consumes much more energy for 

heating and cooling, and demands miles of expansive roads, sewer and water pipes, 

electric utility lines – where all could be reduced if alternative methods can be adopted 

(Schaffer, 1991). In this sense, these suburban areas are in need of serious studies, 

which are the reason of the area selection in this study; making predictions and 

projections for the climate of suburban areas can help to achieve better urban designs. 

The predictions made in this study are based on the predicted parameter’s statistical 

data (daily minimum, maximum and average value) and the building number in the 

area. Even the network has trained over each parameter’s historical data, the machine 

learning algorithm has proven its accuracy with results. The results of the study are 

suggesting a possible relationship between the built environment and climate of the 

area that needs serious further studies to understand it properly. As future work, this 

algorithm will be expanded as parametrically and as the complexity of networks and 

relations of parameters to help us to understand climate change and its effect on urban 

areas and biodiversity. The algorithm will be modified to make predictions with more 

climate and urban inputs and dependencies among those parameters. Also, the scale of 

the network will be modified for working in a single building scale to the whole city-

scale for discovering the relation of micro-scale climate and urban-scale climate. 

Similar studies should be administrated in several areas with different urbanization 

levels to compare the results in order to understand the relation between the built 
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environment and climate. These developments will help to obtain more knowledge 

about the urban climate and ecosystem which can provide great data to achieve more 

sustainable and resilient urban settlements in a better relationship with nature.  
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