

Linear and Multilinear Algebra

A new type of Sylvester-Kac matrix and its spectrum

Carlos M. da Fonseca \& Emrah Kılıç

To cite this article: Carlos M. da Fonseca \& Emrah Kılıç (2019): A new type of Sylvester-Kac matrix and its spectrum, Linear and Multilinear Algebra, DOI: 10.1080/03081087.2019.1620673

To link to this article: https://doi.org/10.1080/03081087.2019.1620673

Published online: 27 May 2019.

Submit your article to this journal

Article views: 204

View related articles $\boxed{\square}$

View Crossmark data \quad ®

A new type of Sylvester-Kac matrix and its spectrum

Carlos M. da Fonseca ${ }^{\mathrm{a}, \mathrm{b}}$ and Emrah Kıliç ${ }^{\mathrm{c}}$

${ }^{\text {c Mathematics Department, TOBB University of Economics and Technology, Ankara, Turkey }}$

Abstract

The Sylvester-Kac matrix, sometimes known as Clement matrix, has many extensions and applications throughout more than a century of its existence. The computation of the eigenvalues or even the determinant have always been challenging problems. In this paper, we aim the introduction of a new family of a Sylvester-Kac type matrix and evaluate the corresponding spectrum. As a consequence, we establish a formula for the determinant.

ARTICLE HISTORY

Received 29 January 2019
Accepted 15 May 2019
COMMUNICATED BY
H.-L. Gau

KEYWORDS

Sylvester-Kac matrix; determinant; eigenvalues

2010 MATHEMATICS SUBJECT CLASSIFICATIONS
15A18; 15A15

1. Introduction

The Sylvester-Kac matrix, also known as Clement matrix, is the $(n+1) \times(n+1)$ tridiagonal matrix with zero main diagonal, one subdiagonal $(1,2, \ldots, n)$, while the other one stands in the reversed order, i.e.

$$
A_{n}=\left(\begin{array}{cccccc}
0 & 1 & & & & \\
n & 0 & 2 & & & \\
& n-1 & \ddots & \ddots & & \\
& & \ddots & \ddots & n-1 & \\
& & & 2 & 0 & n \\
& & & & 1 & 0
\end{array}\right) .
$$

The British mathematician James Joseph Sylvester was the first to consider this matrix in 1854 in his short communication [1], conjecturing that the determinant of its characteristic

[^0]matrix
\[

A_{n}(x)=\left($$
\begin{array}{cccccc}
x & 1 & & & & \\
n & x & 2 & & & \\
& n-1 & \ddots & \ddots & & \\
& & \ddots & \ddots & n-1 & \\
& & & 2 & x & n \\
& & & & 1 & x
\end{array}
$$\right)
\]

was

$$
\begin{equation*}
\operatorname{det} A_{n}(x)=\prod_{k=0}^{n}(x+n-2 k) \tag{1}
\end{equation*}
$$

The first proof of Sylvester's determinantal formula is attributed by Muir to Francesco Mazza in 1866 [2, pp. 442], with a small typographical error as noticed in [3]. Nowadays it is consensual that Mark Kac, in 1947, with his Chauvenet prize-winning paper [4], was, in fact, the first to fully prove the formula, using the method of generating functions, and to provide a polynomial characterization of the eigenvectors. For some early history of this, the reader is referred to [5]. Results on the spectrum were scrutinized, independently rediscovered, and extended by many authors based on different approaches [5-16].

Recently, a new interest emerged in the literature about the Sylvester-Kac matrix, with many new extensions and major results. Perhaps the most relevant can be found in [3, 17-20].

In [18], E. Kıliç and T. Arıkan proposed an extension of $A_{n}(x)$, namely

$$
A_{n}(x, y)=\left(\begin{array}{cccccc}
x & 1 & & & & \\
n & y & 2 & & & \\
& n-1 & x & \ddots & & \\
& & \ddots & \ddots & n-1 & \\
& & & 2 & y & n \\
& & & & 1 & x
\end{array}\right)
$$

if n is even, and

$$
A_{n}(x, y)=\left(\begin{array}{ccccc}
x & 1 & & & \\
n & y & 2 & & \\
& n-1 & x & \ddots & \\
& & \ddots & \ddots & n \\
& & & 1 & y
\end{array}\right)
$$

otherwise, and explicitly evaluate its spectrum, say $\lambda\left(A_{n}(x, y)\right)$, using some similarity techniques:

$$
\lambda\left(A_{n}(x, y)\right)=\left\{\frac{1}{2}(x+y) \mp \frac{1}{2} \sqrt{(x-y)^{2}+(4 k)^{2}}\right\}_{k=1}^{n / 2} \cup\{x\}, \quad \text { for } n \text { even }
$$

and

$$
\lambda\left(A_{n}(x, y)\right)=\left\{\frac{1}{2}(x+y) \mp \frac{1}{2} \sqrt{(x-y)^{2}+(4 k+2)^{2}}\right\}_{k=0}^{(n-1) / 2}, \quad \text { for } n \text { odd }
$$

The determinant now follows.
Theorem 1.1 ([18]): The determinant of $A_{n}(x, y)$ is

$$
\operatorname{det} A_{n}(x, y)= \begin{cases}x \prod_{\left.\substack{t=1 \\(n-1) / 2} x y-(2 t)^{2}\right),} \quad \text { if } n \text { is even } \\ \prod_{t=0}^{n / 2}\left(x y-(2 t+1)^{2}\right), & \text { if } n \text { is odd }\end{cases}
$$

This extension is in the spirit of the original claim proposed Sylvester since he explicitly conjectured the determinant of $A_{n}(x)$. The matrix $A_{n}(x, y)$ is also an extension of a previous work by E. Kılıç [20], where $y=-x$.

In this paper, we aim the introduction of a new type of Sylvester-Kac matrix, denoted by $G_{n}(x)$ or, briefly, G_{n},

$$
G_{n}(x)=\left(\begin{array}{cccccc}
x & n+3 & & & & \tag{2}\\
n & x & n+4 & & & \\
& n-1 & x & \ddots & & \\
& & \ddots & \ddots & 2 n+1 & \\
& & & 2 & x & 2 n+2 \\
& & & & 1 & x
\end{array}\right)_{(n+1) \times(n+1)}
$$

and determine its spectrum, which we will denote by $\lambda\left(G_{n}\right)$. Then we formulate its determinant. Some consequences will be presented as well. In the end, we establish a generalization of the matrix $G_{n}(x)$, which we will denote by $G_{n}(x, y)$. Here the main diagonal entries will be in a 2-periodic form, oscillating between x to y. Setting $x=y$, we will recover the matrix $G_{n}(x)$. Notice that all these matrices are of order $n+1$.

2. The spectrum of $\boldsymbol{G}_{\boldsymbol{n}}(\boldsymbol{x})$

In this section we first find the spectrum of $G_{n}(x)$, denoted by $\lambda\left(G_{n}(x)\right)$ and, later on, derive its determinant.

Theorem 2.1: The eigenvalues of $G_{n}(x)$ are given by

$$
\begin{aligned}
\lambda\left(G_{2 n-1}\right) & =\{x \pm 2, x \pm 6, x \pm 10, \ldots, x \pm 2(2 n-1)\} \\
& =\{x \pm 2(2 k-1)\}_{k=1}^{n}
\end{aligned}
$$

and

$$
\begin{aligned}
\lambda\left(G_{2 n}\right) & =\{x, x \pm 4, x \pm 8, x \pm 12, \ldots, x \pm 4 n\} \\
& =\{x \pm 2(2 k)\}_{k=0}^{n} .
\end{aligned}
$$

We start finding two eigenvalues of G_{n} and then two corresponding left eigenvectors associated them.

Let us define the two $2 n+1$-vectors,

$$
u_{1}=(1,2,3, \ldots, 2 n+1) \quad \text { and } \quad u_{2}=(1,-2,3, \ldots,-2 n, 2 n+1)
$$

The next lemma says that u_{1} and u_{2} are eigenvectors of $G_{2 n}$.
Lemma 2.2: The matrix $G_{2 n}$ has the eigenvalues $\lambda^{+}=x+4 n$ and $\lambda^{-}=x-4 n$ with left eigenvectors u_{1} and u_{2}, respectively.

Proof: To prove our claim, it is sufficient to show that

$$
u_{1} G_{2 n}=\lambda^{+} u_{1} \quad \text { and } \quad u_{2} G_{2 n}=\lambda^{-} u_{2}
$$

Notice the k th component of u_{1} by is precisely k. From the definitions of $G_{2 n}$ and u_{1}, we should show that

$$
\begin{align*}
x+(2 n) 2 & =\lambda^{+} \\
(4 n+2) 2 n+x(2 n+1) & =\lambda^{+}(2 n+1) \tag{3}\\
(k-1)(2 n+1+k)+k x+(k+1)(2 n+1-k) & =\lambda^{+} k, \quad \text { for } 2 \leqslant k \leqslant 2 n-1
\end{align*}
$$

The only equalities requiring some algebra are those defined in (3). Our first claim follows then.

The other case, i.e. $u_{2} G_{2 n}=\lambda^{-} u_{2}$, can be handled in a similar way.
Similarly to the previous case, we define two $2 n$-vectors:

$$
v_{1}=(1,2,3, \ldots, 2 n) \quad \text { and } \quad v_{2}=(1,-2,3, \ldots,-2 n) .
$$

The next lemma can be proved analogously to the previous result.
Lemma 2.3: The matrix $G_{2 n-1}$ has the eigenvalues $\mu^{+}=x+2(2 n-1)$ and $\mu^{-}=x-$ $2(2 n-1)$ with left eigenvectors v_{1} and v_{2}, respectively.

Now our purpose is to find similar matrices to $G_{2 n}$ and $G_{2 n-1}$, respectively. We start with the matrix $G_{2 n}$.

Define a matrix T of order $2 n+1$ as shown

$$
T=\left(\right)
$$

where $\mathbf{0}_{m \times n}$ is the $m \times n$ zero matrix and I_{k} is the identity matrix of order k. Its inverse is

$$
T^{-1}=\left(\right)
$$

We can easily check that $G_{2 n}$ is similar to the matrix

$$
E=\left(\begin{array}{cc|c}
\lambda^{+} & 0 & \mathbf{0}_{2 \times(2 n-1)} \\
0 & \lambda^{-} & \\
\hline \frac{2 n-1}{4} & -\frac{2 n-1}{4} & \\
& \mathbf{0}_{(2 n-2) \times 2} & W
\end{array}\right)
$$

where W is the matrix of order $2 n-1$ is given by

$$
W=\left(\begin{array}{cccccccc}
x & 7-2 n & 0 & -3(2 n-1) & \cdots & 0 & -n(2 n-1) & 0 \\
2 n-2 & x & 2 n+6 & 0 & & & & \\
& 2 n-3 & x & 2 n+7 & \ddots & & & \\
& & 2 n-4 & \ddots & \ddots & 0 & & \\
& & & \ddots & \ddots & 4 n & 0 & \\
& & & & 3 & x & 4 n+1 & 0 \\
& & & & & 2 & x & 4 n+2 \\
& & & & & & 1 & x
\end{array}\right)
$$

since $E=T G_{2 n} T^{-1}$. Consequently, $\lambda^{ \pm}$are eigenvalues of both E and $G_{2 n}$.
We will focus now on the matrix $G_{2 n-1}$. Define the matrix Y of order $2 n$ as

$$
Y=\left(\begin{array}{cc|cccc}
1 & 2 & 3 & \cdots & 2 n-1 & 2 n \\
1 & -2 & 3 & \cdots & 2 n-1 & -2 n \\
\hline & \mathbf{0}_{(2 n-2) \times 2} & & & I_{2 n-2}
\end{array}\right) .
$$

Similarly to the previous case, we obtain have

$$
Y^{-1}=\left(\right)
$$

Therefore, $G_{2 n-1}$ is similar, via Y, to the matrix $D=Y G_{2 n-1} Y^{-1}$ of the form

$$
D=\left(\begin{array}{cc|c}
\mu^{+} & 0 & \mathbf{0}_{2 \times(2 n-2)} \\
0 & \mu^{-} & \\
\hline \frac{n-1}{2} & -\frac{n-1}{2} & \\
& \mathbf{0}_{(2 n-3) \times 2} & Q
\end{array}\right)
$$

where Q is the matrix, of order $2 n-2$,

$$
Q=\left(\begin{array}{ccccccc}
x & -2(n-4) & 0 & -6(n-1) & \cdots & 0 & -2 n(n-1) \\
2 n-3 & x & 2 n+5 & 0 & & & \\
& 2 n-4 & x & 2 n+6 & \ddots & & \\
& & 2 n-5 & \ddots & \ddots & 0 & \\
& & & \ddots & \ddots & 4 n-1 & 0 \\
& & & & 2 & x & 4 n \\
& & & & & 1 & x
\end{array}\right)
$$

Thus μ^{+}and μ^{-}are eigenvalues of the matrix $G_{2 n-1}$.
To compute the remaining eigenvalues of $G_{2 n-1}$ and $G_{2 n}$, we proceed providing some auxiliary results.

Define an upper triangle matrix U_{n} as follows

$$
U_{2 \ell-1}=\left(\begin{array}{cccccccc}
1 & 0 & 2 & 0 & 3 & \cdots & 0 & \ell \\
& 1 & 0 & 2 & 0 & 3 & \ddots & 0 \\
& & 1 & 0 & 2 & 0 & \ddots & \vdots \\
& & & \ddots & \ddots & \ddots & \ddots & 3 \\
& & & & \ddots & \ddots & \ddots & 0 \\
& & & & & \ddots & \ddots & 2 \\
& & & & & \ddots & 0 \\
& & & & & & 1
\end{array}\right)_{(2 \ell-1) \times(2 \ell-1)}
$$

and

$$
U_{2 \ell}=\left(\begin{array}{ccccccccc}
1 & 0 & 2 & 0 & 3 & 0 & \cdots & \ell & 0 \\
& 1 & 0 & 2 & 0 & 3 & 0 & \ddots & \ell \\
& & 1 & 0 & 2 & 0 & 3 & \ddots & \vdots \\
& & & \ddots & \ddots & \ddots & \ddots & \ddots & 0 \\
& & & & \ddots & \ddots & \ddots & \ddots & 3 \\
& & & & \ddots & \ddots & \ddots & 0 \\
& & & & & \ddots & \ddots & 2 \\
& & & & & & \ddots & 0 \\
& & & & & & & 1
\end{array}\right)_{2 \ell \times 2 \ell}
$$

Therefore, for any parity of n, the inverse matrix U_{n}^{-1} is

$$
U_{n}^{-1}=\left(\begin{array}{cccccccc}
1 & 0 & -2 & 0 & 1 & & & \\
& 1 & 0 & -2 & 0 & 1 & & \\
& & \ddots & \ddots & \ddots & \ddots & \ddots & \\
& & & 1 & 0 & -2 & 0 & 1 \\
& & & & 1 & 0 & -2 & 0 \\
& & & & & 1 & 0 & -2 \\
& & & & & & 1 & 0 \\
& & & & & & & 1
\end{array}\right)
$$

Taking into account the definition of U_{n}, we clearly have

$$
G_{2 n-2}=U_{2 n-1} W U_{2 n-1}^{-1} \quad \text { and } \quad G_{2 n-1}=U_{2 n} Q U_{2 n}^{-1}
$$

Furthermore, let us define the following matrix of order n

$$
M_{n}=\left(\begin{array}{c|c}
I_{2} & \mathbf{0}_{2 \times(n-2)} \\
\hline \mathbf{0}_{(n-2) \times 2} & U_{n-2}
\end{array}\right) .
$$

Hence we get

$$
M_{2 n+1}^{-1} E M_{2 n+1}=\left(\begin{array}{cc|c}
\lambda^{+} & 0 & \mathbf{0}_{2 \times(2 n-1)} \\
\frac{0}{2 n-1} & \lambda^{-} & \\
\frac{2 n-1}{4} & -\frac{2 n-1}{4} & \\
\mathbf{0}_{(2 n-2) \times 2} & & U_{2 n-1}^{-1} W U_{2 n-1}
\end{array}\right)
$$

and

$$
M_{2 n}^{-1} D M_{2 n}=\left(\begin{array}{cc|c}
\mu^{+} & 0 & \mathbf{0}_{2 \times(2 n-2)} \\
0 & \mu^{-} & \\
\hline \frac{n-1}{2} & -\frac{n-1}{2} & \\
\mathbf{0}_{(2 n-3) \times 2} & & U_{2 n-2}^{-1} Q U_{2 n-2}
\end{array}\right) .
$$

Up to now, we derived the identities

$$
\begin{aligned}
E & =T G_{2 n} T^{-1}, \\
D & =Y G_{2 n-1} Y^{-1}, \\
G_{2 n-2} & =U_{2 n-1} W U_{2 n-1}^{-1}, \\
G_{2 n-1} & =U_{2 n-2} Q U_{2 n-2}^{-1} .
\end{aligned}
$$

From the definition of G_{n} given in (2), both $M_{2 n+1}^{-1} E M_{2 n+1}$ and $M_{2 n}^{-1} D M_{2 n}$ can be rewritten in the following lower-triangular block form

$$
\left(\begin{array}{cc|c}
\lambda^{+} & 0 & \tag{4}\\
0 & \lambda^{-} & 0 \\
\hline * & & G_{2 n-1}
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{cc|c}
\mu^{+} & 0 & \\
0 & \mu^{-} & 0 \\
\hline * & & G_{2 n-2}
\end{array}\right)
$$

respectively.
From (4), we get the recurrences on $n>0$,

$$
\operatorname{det} G_{2 n-1}=\mu^{+} \mu^{-} \operatorname{det} G_{2 n-3}=\left(x^{2}-4(2 n-1)^{2}\right) G_{2 n-3}, \quad \text { with } \operatorname{det} G_{-1}=1
$$

and

$$
\operatorname{det} G_{2 n}=\lambda^{+} \lambda^{-} \operatorname{det} G_{2 n-2}=\left(x^{2}-16 n^{2}\right) \operatorname{det} G_{2 n-2}, \quad \text { with } \operatorname{det} G_{0}=x
$$

which means that

$$
\operatorname{det} G_{n}=\left(x^{2}-4 n^{2}\right) \operatorname{det} G_{n-2}
$$

with the two initial conditions stated above. Finally, we obtain Theorem 2.1.
Now the determinant of G_{n} follows immediately.

Theorem 2.4: The determinant of $G_{n}(x)$ is

$$
\operatorname{det} G_{n}(x)= \begin{cases}\prod_{t=1}^{(n+1) / 2}\left(x^{2}-(4 t-2)^{2}\right), & \text { if } n \text { is odd } \\ x \prod_{t=0}^{n / 2}\left(x^{2}-(4 t)^{2}\right), & \text { if } n \text { is even }\end{cases}
$$

3. A generalization for $\boldsymbol{G}_{\boldsymbol{n}}(\boldsymbol{x})$

In the section, we will discuss a generalization of $G_{n}(x)$, where the main diagonal is biperiodic, as described in the introduction and studied in a related problem in [18].

Let us consider a new matrix $G_{n}(x, y)$ defined as

$$
G_{n}(x, y)=\left(\begin{array}{cccccccc}
x & n+3 & & & & & & \\
n & y & n+4 & & & & & \\
& n-1 & x & n+5 & & & & \\
& & n-2 & \ddots & \ddots & & & \\
& & & \ddots & \ddots & \ddots & & \\
& & & & \ddots & y & 2 n+1 & \\
& & & & & 2 & x & 2 n+2 \\
& & & & & & 1 & y
\end{array}\right)
$$

if n is odd, and

$$
G_{n}(x, y)=\left(\begin{array}{cccccccc}
x & n+3 & & & & & & \\
n & y & n+4 & & & & & \\
& n-1 & x & n+5 & & & & \\
& & n-2 & y & \ddots & & & \\
& & & \ddots & \ddots & \ddots & & \\
& & & & \ddots & x & 2 n+1 & \\
& & & & & 2 & y & 2 n+2 \\
& & & & & & 1 & x
\end{array}\right)
$$

if n is even.
Now for later use, we shall note a fact. Consider
$F_{n+1}:=(\sqrt{z})^{n+1} \operatorname{det}\left(\begin{array}{cccc}\sqrt{z} & b_{1} & & \\ c_{1} & \ddots & \ddots & \\ & \ddots & \ddots & b_{n} \\ & & c_{n-1} & \sqrt{z}\end{array}\right)=\operatorname{det}\left(\begin{array}{cccc}z & \sqrt{z} b_{1} & & \\ \sqrt{z} c_{1} & \ddots & \ddots & \\ & \ddots & \ddots & \sqrt{z} b_{n} \\ & & \sqrt{z} c_{n-1} & z\end{array}\right)$,
which, by expanding with the Laplace expansion according to the last row or column, gives us

$$
F_{n+1}=z F_{n}-z b_{n} c_{n} F_{n-1} \quad \text { with initials } F_{0}=1 \quad \text { and } \quad F_{1}=z
$$

Meanwhile, now consider

$$
P_{n+1}:=\operatorname{det}\left(\begin{array}{cccc}
z & b_{1} & & \\
z c_{1} & \ddots & \ddots & \\
& \ddots & \ddots & b_{n} \\
& & z c_{n} & z
\end{array}\right)
$$

and if we expand it according to the last row or column, we obtain

$$
P_{n+1}=z P_{n}-z b_{n} c_{n} P_{n-1} \quad \text { with } P_{0}=1 \quad \text { and } P_{1}=z
$$

Thus we deduce the fact that since the sequences $\left\{F_{n}\right\}$ and $\left\{P_{n}\right\}$ have the same recursions and the same initials, these are the same. Clearly, we have

$$
\operatorname{det}\left(\begin{array}{cccc}
z & b_{1} & & \\
z c_{1} & \ddots & \ddots & \\
& \ddots & \ddots & b_{n} \\
& & z c_{n} & z
\end{array}\right)=(\sqrt{z})^{n+1} \operatorname{det}\left(\begin{array}{cccc}
\sqrt{z} & b_{1} & & \\
c_{1} & \ddots & \ddots & \\
& \ddots & \ddots & b_{n} \\
& & c_{n-1} & \sqrt{z}
\end{array}\right)
$$

On the other hand, we also obtain similar determinantal identity as shown

$$
\begin{align*}
& (x y)^{\lfloor n+1 / 2\rfloor} y^{n+1 \bmod 2 \operatorname{det} G_{n}(x, y)} \\
& \quad=\operatorname{det}\left(\begin{array}{cccccc}
x y & n+3 \\
x y n & x y & n+4 & & & \\
& x y(n-1) & \ddots & \ddots & & \\
& & \ddots & \ddots & 2 n+1 & \\
& & & x y \cdot 2 & x y & 2 n+2 \\
& & & & x y \cdot 1 & x y
\end{array}\right) . \tag{1}
\end{align*}
$$

We may prove this identity in a similar way to the previous one. In fact, again using a similar approach as for the previous equality according to the parity of n, the proof could be easily obtained. Combining the two previous equalities and setting $z=\sqrt{x y}$, we get

$$
\operatorname{det} G_{n}(x, y)= \begin{cases}\operatorname{det} G_{n}(\sqrt{x y}), & \text { if } n \text { is odd } \\ \sqrt{\frac{x}{y}} \operatorname{det} G_{n}(\sqrt{x y}), & \text { if } n \text { is even }\end{cases}
$$

This means, from Theorem 2.4,

$$
\operatorname{det} G_{n}(x, y)= \begin{cases}\prod_{t=1}^{(n+1) / 2}\left(x y-(4 t-2)^{2}\right), & \text { if } n \text { is odd } \\ x \prod_{t=0}^{n / 2}\left(x y-(4 t)^{2}\right), & \text { if } n \text { is even. }\end{cases}
$$

As a conclusion, we can set the eigenvalues for $G_{n}(x, y)$.

Theorem 3.1: The eigenvalues of $G_{n}(x, y)$ are:

$$
\lambda\left(G_{2 n-1}(x, y)\right)=\left\{\frac{x+y}{2} \pm \frac{1}{2} \sqrt{(x-y)^{2}+16(2 t-1)^{2}}\right\}_{t=1}^{n}
$$

and

$$
\lambda\left(G_{2 n}(x, y)\right)=\{x\} \cup\left\{\frac{x+y}{2} \pm \frac{1}{2} \sqrt{(x-y)^{2}+16(2 t)^{2}}\right\}_{t=1}^{n}
$$

Disclosure statement

No potential conflict of interest was reported by the authors.

References

[1] Sylvester JJ. Théorème sur les déterminants de M. Sylvester. Nouvelles Ann Math. 1854;13:305.
[2] Muir T. The theory of determinants in the historical order of development. vol. II. New York: Dover Publications; 1960. (reprinted).
[3] da Fonseca CM, Mazilu DA, Mazilu I, et al. The eigenpairs of a Sylvester-Kac type matrix associated with a simple model for one-dimensional deposition and evaporation. Appl Math Lett. 2013;26:1206-1211.
[4] Kac M. Random walk and the theory of Brownian motion. Amer Math Monthly. 1947;54:369-391.
[5] Taussky O, Todd J. Another look at a matrix of Mark Kac. Linear Algebra Appl. 1991;150:341-360.
[6] da Fonseca CM, Kılıç E. An observation on the determinant of a Sylvester-Kac type matrix, An. Ştiinț. Univ. Ovidius Constanța Ser. Mat., accepted for publication.
[7] Holtz O. Evaluation of Sylvester type determinants using block-triangularization. In: Begehr HGW, et al. editor. Advances in analysis. Hackensack, NJ: World Scientific; 2005. p. 395-405.
[8] Askey R. Evaluation of Sylvester type determinants using orthogonal polynomials. In: Begehr HGW, et al. editor. Advances in analysis. Hackensack, NJ: World Scientific; 2005, p. 1-16.
[9] Boros T, Rózsa P. An explicit formula for singular values of the Sylvester-Kac matrix. Linear Algebra Appl. 2007;421:407-416.
[10] Clement PA. A class of triple-diagonal matrices for test purposes. SIAM Rev. 1959;1:50-52.
[11] Chu W, Wang X. Eigenvectors of tridiagonal matrices of Sylvester type. Calcolo. 2008;45: 217-233.
[12] Edelman A, Kostlan E. The road from Kac's matrix to Kac's random polynomials. In: Lewis J, editor. Proceedings of the Fifth SIAM Conference on Applied Linear Algebra, Philadelphia: SIAM; 1994. p. 503-507.
[13] Ikramov KhD. On a remarkable property of a matrix of Mark Kac. Math Notes. 2002;72:325-330.
[14] Rózsa P. Remarks on the spectral decomposition of a stochastic matrix. Magyar Tud Akad Mat Fiz Oszt Közl. 1957;7:199-206.
[15] Schrödinger E. Quantisierung als Eigenwertproblem III. Ann Phys. 1926;80:437-490.
[16] Vincze I. Über das Ehrenfestsche Modell der Wärmeübertragung. Archi Math. 1964;XV: 394-400.
[17] Chu W. Fibonacci polynomials and Sylvester determinant of tridiagonal matrix. Appl Math Comput. 2010;216:1018-1023.
[18] Kılıç E, Arıkan T. Evaluation of spectrum of 2-periodic tridiagonal-Sylvester matrix. Turk J Math. 2016;40:80-89.
[19] Oste R, Van den Jeugt J. Tridiagonal test matrices for eigenvalue computations: two-parameter extensions of the Clement matrix. J Comput Appl Math. 2017;314:30-39.
[20] Kılıç E. Sylvester-tridiagonal matrix with alternating main diagonal entries and its spectra. Inter J Nonlinear Sci Num Simulation. 2013;14:261-266.

[^0]: CONTACT E. Kllıç ekilic@etu.edu.tr Mathematics Department, TOBB University of Economics and Technology, 06560 Ankara, Turkey

