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ABSTRACT
The Sylvester–Kac matrix, sometimes known as Clement matrix, has
many extensions and applications throughout more than a century
of its existence. The computation of the eigenvalues or even the
determinant have always been challenging problems. In this paper,
we aim the introduction of a new family of a Sylvester–Kac type
matrix and evaluate the corresponding spectrum. As a consequence,
we establish a formula for the determinant.
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1. Introduction

The Sylvester–Kac matrix, also known as Clement matrix, is the (n + 1) × (n + 1) tridi-
agonal matrix with zero main diagonal, one subdiagonal (1, 2, . . . , n), while the other one
stands in the reversed order, i.e.

An =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1
n 0 2

n − 1
. . . . . .
. . . . . . n − 1

2 0 n
1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The British mathematician James Joseph Sylvester was the first to consider this matrix in
1854 in his short communication [1], conjecturing that the determinant of its characteristic
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2 C. M. DA FONSECA AND E. KILIÇ

matrix

An(x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x 1
n x 2

n − 1
. . . . . .
. . . . . . n − 1

2 x n
1 x

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

was

detAn(x) =
n∏

k=0

(x + n − 2k). (1)

The first proof of Sylvester’s determinantal formula is attributed by Muir to Francesco
Mazza in 1866 [2, pp. 442], with a small typographical error as noticed in [3]. Nowadays
it is consensual that Mark Kac, in 1947, with his Chauvenet prize-winning paper [4], was,
in fact, the first to fully prove the formula, using the method of generating functions, and
to provide a polynomial characterization of the eigenvectors. For some early history of
this, the reader is referred to [5]. Results on the spectrum were scrutinized, independently
rediscovered, and extended by many authors based on different approaches [5–16].

Recently, a new interest emerged in the literature about the Sylvester–Kac matrix, with
many new extensions and major results. Perhaps the most relevant can be found in [3,
17–20].

In [18], E. Kılıç and T. Arıkan proposed an extension of An(x), namely

An(x, y) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x 1
n y 2

n − 1 x
. . .

. . . . . . n − 1
2 y n

1 x

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

if n is even, and

An(x, y) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

x 1
n y 2

n − 1 x
. . .

. . . . . . n
1 y

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

otherwise, and explicitly evaluate its spectrum, say λ(An(x, y)), using some similarity
techniques:

λ(An(x, y)) =
{
1
2
(x + y) ∓ 1

2

√
(x − y)2 + (4k)2

}n/2

k=1
∪ {x}, for n even,
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and

λ(An(x, y)) =
{
1
2
(x + y) ∓ 1

2

√
(x − y)2 + (4k + 2)2

}(n−1)/2

k=0
, for n odd.

The determinant now follows.

Theorem 1.1 ([18]): The determinant of An(x, y) is

detAn(x, y) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
x
n/2∏
t=1

(xy − (2t)2), if n is even,

(n−1)/2∏
t=0

(xy − (2t + 1)2), if n is odd.

This extension is in the spirit of the original claim proposed Sylvester since he explicitly
conjectured the determinant ofAn(x). ThematrixAn(x, y) is also an extension of a previous
work by E. Kılıç [20], where y=−x.

In this paper, we aim the introduction of a new type of Sylvester–Kac matrix, denoted
by Gn(x) or, briefly, Gn,

Gn(x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

x n + 3
n x n + 4

n − 1 x
. . .

. . . . . . 2n + 1
2 x 2n + 2

1 x

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(n+1)×(n+1)

, (2)

anddetermine its spectrum,whichwewill denote byλ(Gn). Thenwe formulate its determi-
nant. Some consequences will be presented as well. In the end, we establish a generalization
of the matrix Gn(x), which we will denote by Gn(x, y). Here the main diagonal entries will
be in a 2-periodic form, oscillating between x to y. Setting x = y, we will recover thematrix
Gn(x). Notice that all these matrices are of order n+1.

2. The spectrum of Gn(x)

In this sectionwe first find the spectrumofGn(x), denoted byλ(Gn(x)) and, later on, derive
its determinant.

Theorem 2.1: The eigenvalues of Gn(x) are given by

λ(G2n−1) = {x ± 2, x ± 6, x ± 10, . . . , x ± 2 (2n − 1)}
= {x ± 2 (2k − 1)}nk=1

and

λ(G2n) = {x, x ± 4, x ± 8, x ± 12, . . . , x ± 4n}
= {x ± 2 (2k)}nk=0 .
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We start finding two eigenvalues of Gn and then two corresponding left eigenvectors
associated them.

Let us define the two 2n+1-vectors,

u1 = (1, 2, 3, . . . , 2n + 1) and u2 = (1,−2, 3, . . . ,−2n, 2n + 1).

The next lemma says that u1 and u2 are eigenvectors of G2n.

Lemma 2.2: The matrix G2n has the eigenvalues λ+ = x + 4n and λ− = x − 4n with left
eigenvectors u1 and u2, respectively.

Proof: To prove our claim, it is sufficient to show that

u1G2n = λ+u1 and u2G2n = λ−u2 .

Notice the kth component of u1 by is precisely k. From the definitions of G2n and u1, we
should show that

x + (2n)2 = λ+,

(4n + 2) 2n + x(2n + 1) = λ+(2n + 1),

(k − 1)(2n + 1 + k) + kx + (k + 1)(2n + 1 − k) = λ+k, for 2 � k � 2n − 1.

(3)

The only equalities requiring some algebra are those defined in (3). Our first claim follows
then.

The other case, i.e. u2G2n = λ−u2, can be handled in a similar way. �

Similarly to the previous case, we define two 2n-vectors:

v1 = (1, 2, 3, . . . , 2n) and v2 = (1,−2, 3, . . . ,−2n).

The next lemma can be proved analogously to the previous result.

Lemma 2.3: The matrix G2n−1 has the eigenvalues μ+ = x + 2(2n − 1) and μ− = x −
2(2n − 1) with left eigenvectors v1 and v2, respectively.

Now our purpose is to find similar matrices to G2n and G2n−1, respectively. We start
with the matrix G2n.

Define a matrix T of order 2n+1 as shown

T =
⎛
⎝ 1 2 3 · · · 2n 2n + 1

1 −2 3 · · · −2n 2n + 1
0(2n−1)×2 I2n−1

⎞
⎠ ,

where 0m×n is them × n zero matrix and Ik is the identity matrix of order k. Its inverse is

T−1 =
⎛
⎝ 1

2
1
2 −3 0 −5 0 · · · 0 −(2n + 1)

1
4 − 1

4 0 −2 0 −3 · · · −n 0
0(2n−1)×2 I2n−1

⎞
⎠ .
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We can easily check that G2n is similar to the matrix

E =

⎛
⎜⎜⎜⎝

λ+ 0 02×(2n−1)
0 λ−

2n − 1
4

−2n − 1
4

0(2n−2)×2 W

⎞
⎟⎟⎟⎠ ,

whereW is the matrix of order 2n−1 is given by

W =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x 7 − 2n 0 −3(2n − 1) · · · 0 −n(2n − 1) 0
2n − 2 x 2n + 6 0

2n − 3 x 2n + 7
. . .

2n − 4
. . . . . . 0
. . . . . . 4n 0

3 x 4n + 1 0
2 x 4n + 2

1 x

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

since E = TG2nT−1. Consequently, λ± are eigenvalues of both E and G2n.
We will focus now on the matrix G2n−1. Define the matrix Y of order 2n as

Y =
⎛
⎝ 1 2 3 · · · 2n − 1 2n

1 −2 3 · · · 2n − 1 −2n
0(2n−2)×2 I2n−2

⎞
⎠ .

Similarly to the previous case, we obtain have

Y−1 =
⎛
⎝ 1

2
1
2 −3 0 −5 0 · · · 0 − (2n − 1) 0

1
4 − 1

4 0 −2 0 −3 · · · − (n − 1) 0 −n
0(2n−2)×2 I2n−2

⎞
⎠ .

Therefore, G2n−1 is similar, via Y , to the matrix D = YG2n−1Y−1 of the form

D =

⎛
⎜⎜⎜⎝

μ+ 0 02×(2n−2)
0 μ−

n − 1
2

−n − 1
2

0(2n−3)×2 Q

⎞
⎟⎟⎟⎠ ,

where Q is the matrix, of order 2n−2,

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x −2(n − 4) 0 −6(n − 1) · · · 0 −2n(n − 1)
2n − 3 x 2n + 5 0

2n − 4 x 2n + 6
. . .

2n − 5
. . . . . . 0
. . . . . . 4n − 1 0

2 x 4n
1 x

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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Thus μ+ and μ− are eigenvalues of the matrix G2n−1.
To compute the remaining eigenvalues of G2n−1 and G2n, we proceed providing some

auxiliary results.
Define an upper triangle matrix Un as follows

U2�−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 2 0 3 · · · 0 �

1 0 2 0 3
. . . 0

1 0 2 0
. . .

...
. . . . . . . . . . . . 3

. . . . . . . . . 0
. . . . . . 2

. . . 0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2�−1)×(2�−1)

and

U2� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 2 0 3 0 · · · � 0

1 0 2 0 3 0
. . . �

1 0 2 0 3
. . .

...
. . . . . . . . . . . . . . . 0

. . . . . . . . . . . . 3
. . . . . . . . . 0

. . . . . . 2
. . . 0

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2�×2�

.

Therefore, for any parity of n, the inverse matrix U−1
n is

U−1
n =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 −2 0 1
1 0 −2 0 1

. . . . . . . . . . . . . . .
1 0 −2 0 1

1 0 −2 0
1 0 −2

1 0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Taking into account the definition of Un, we clearly have

G2n−2 = U2n−1WU−1
2n−1 and G2n−1 = U2nQU−1

2n .
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Furthermore, let us define the following matrix of order n

Mn =
(

I2 02×(n−2)
0(n−2)×2 Un−2

)
.

Hence we get

M−1
2n+1EM2n+1 =

⎛
⎜⎜⎜⎝

λ+ 0 02×(2n−1)
0 λ−

2n − 1
4

−2n − 1
4

0(2n−2)×2 U−1
2n−1WU2n−1

⎞
⎟⎟⎟⎠

and

M−1
2n DM2n =

⎛
⎜⎜⎜⎝

μ+ 0 02×(2n−2)
0 μ−

n − 1
2

−n − 1
2

0(2n−3)×2 U−1
2n−2QU2n−2

⎞
⎟⎟⎟⎠ .

Up to now, we derived the identities

E = T G2n T−1,

D = Y G2n−1 Y−1,

G2n−2 = U2n−1WU−1
2n−1,

G2n−1 = U2n−2 QU−1
2n−2.

From the definition ofGn given in (2), bothM−1
2n+1EM2n+1 andM−1

2n DM2n can be rewritten
in the following lower-triangular block form⎛

⎝ λ+ 0
0 λ− 0
∗ G2n−1

⎞
⎠ and

⎛
⎝ μ+ 0

0 μ− 0
∗ G2n−2

⎞
⎠ , (4)

respectively.
From (4), we get the recurrences on n>0,

detG2n−1 = μ+μ− detG2n−3 = (x2 − 4(2n − 1)2)G2n−3, with detG−1 = 1

and

detG2n = λ+λ− detG2n−2 = (x2 − 16n2) detG2n−2, with detG0 = x,

which means that

detGn = (x2 − 4n2) detGn−2,

with the two initial conditions stated above. Finally, we obtain Theorem 2.1.
Now the determinant of Gn follows immediately.
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Theorem 2.4: The determinant of Gn(x) is

detGn(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(n+1)/2∏
t=1

(x2 − (4t − 2)2), if n is odd,

x
n/2∏
t=0

(x2 − (4t)2), if n is even.

3. A generalization for Gn(x)

In the section, we will discuss a generalization of Gn(x), where the main diagonal is bi-
periodic, as described in the introduction and studied in a related problem in [18].

Let us consider a new matrix Gn(x, y) defined as

Gn(x, y) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x n + 3
n y n + 4

n − 1 x n + 5

n − 2
. . . . . .
. . . . . . . . .

. . . y 2n + 1
2 x 2n + 2

1 y

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

if n is odd, and

Gn(x, y) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x n + 3
n y n + 4

n − 1 x n + 5

n − 2 y
. . .

. . . . . . . . .
. . . x 2n + 1

2 y 2n + 2
1 x

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

if n is even.
Now for later use, we shall note a fact. Consider

Fn+1 :=(
√
z)n+1 det

⎛
⎜⎜⎜⎜⎝

√
z b1

c1
. . . . . .
. . . . . . bn

cn−1
√
z

⎞
⎟⎟⎟⎟⎠=det

⎛
⎜⎜⎜⎜⎝

z
√
zb1

√
zc1

. . . . . .

. . . . . . √
zbn√

zcn−1 z

⎞
⎟⎟⎟⎟⎠ ,

which, by expanding with the Laplace expansion according to the last row or column, gives
us

Fn+1 = zFn − zbncnFn−1 with initials F0 = 1 and F1 = z.



LINEAR ANDMULTILINEAR ALGEBRA 9

Meanwhile, now consider

Pn+1 := det

⎛
⎜⎜⎜⎜⎝

z b1

zc1
. . . . . .
. . . . . . bn

zcn z

⎞
⎟⎟⎟⎟⎠

and if we expand it according to the last row or column, we obtain

Pn+1 = zPn − zbncnPn−1 with P0 = 1 and P1 = z.

Thus we deduce the fact that since the sequences {Fn} and {Pn} have the same recursions
and the same initials, these are the same. Clearly, we have

det

⎛
⎜⎜⎜⎜⎝

z b1

zc1
. . . . . .
. . . . . . bn

zcn z

⎞
⎟⎟⎟⎟⎠ = (

√
z)n+1 det

⎛
⎜⎜⎜⎜⎝

√
z b1

c1
. . . . . .
. . . . . . bn

cn−1
√
z

⎞
⎟⎟⎟⎟⎠ .

On the other hand, we also obtain similar determinantal identity as shown

(xy)�n+1/2�yn+1 mod 2 detGn(x, y)

= det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

xy n + 3
xyn xy n + 4

xy(n − 1)
. . . . . .
. . . . . . 2n + 1

xy · 2 xy 2n + 2
xy · 1 xy

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (1)

Wemay prove this identity in a similar way to the previous one. In fact, again using a similar
approach as for the previous equality according to the parity of n, the proof could be easily
obtained. Combining the two previous equalities and setting z = √xy, we get

detGn(x, y) =
{
detGn(

√xy), if n is odd,√
x
y detGn(

√xy), if n is even.

This means, from Theorem 2.4,

detGn(x, y) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(n+1)/2∏
t=1

(xy − (4t − 2)2), if n is odd,

x
n/2∏
t=0

(xy − (4t)2), if n is even.

As a conclusion, we can set the eigenvalues for Gn(x, y).
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Theorem 3.1: The eigenvalues of Gn(x, y) are:

λ(G2n−1(x, y)) =
{
x + y
2

± 1
2

√
(x − y)2 + 16(2t − 1)2

}n

t=1

and

λ(G2n(x, y)) = {x} ∪
{
x + y
2

± 1
2

√
(x − y)2 + 16(2t)2

}n

t=1
.
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