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Cluster analysis plays a significant role regarding automating such
a knowledge discovery process in spatial data mining. A good
clustering algorithm supports two essential conditions, namely
high intra-cluster similarity and low inter-cluster similarity.
Maximized intra-cluster/within-cluster similarity produces low
distances between data points inside the same cluster. However,
minimized inter-cluster/between-cluster similarity increases the
distance between data points in different clusters by furthering
them apart from each other. We previously presented a spatial
clustering algorithm, abbreviated CutESC (Cut-Edge for Spatial
Clustering) with a graph-based approach. The data presented in
this article is related to and supportive to the research paper
entitled “CutESC: Cutting edge spatial clustering technique based
on proximity graphs” (Aksac et al., 2019) [1], where interpretation
research data presented here is available. In this article, we share
the parametric version of our algorithm named CutESC-P, the best
parameter settings for the experiments, the additional analyses
and some additional information related to the proposed algo-
rithm (CutESC) in [1].
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Specifications Table

Subject Computer Science (General)
Specific subject area Spatial Data Mining, Clustering, Proximity Graphs, Graph Theory
Type of data Table

Figure
How data was acquired Clustering analysis
Data format raw and analyzed
Experimental factors A preprocessing step is used for heterogeneous features. manuscript. The features are

standardized by subtracting the mean and scaling to unit variance; all features are centered
around zero.

Experimental features Several clustering algorithms used to cluster various synthetic and real-world datasets from
UCI repository, as well as real data related to image segmentation problems.

Data source location Institution: University of Calgary
City/Town/Region: Calgary, AB
Country: CANADA

Data accessibility The raw data files are provided in the Mendeley Data, https://doi.org/10.17632/
hkkbnxf4yp.1 [2]. All other data is with this article.

Related research article Alper Aksac, Tansel €Ozyer, Reda Alhajj
CutESC: Cutting edge spatial clustering technique based on proximity graphs
Pattern Recognition https://doi.org/10.1016/j.patcog.2019.06.014

Value of the Data
� The parametric version of our algorithm presented here may be useful for users to set two parameters to better adapt

clustering solutions for particular problems.
� This data file presents the best parameter settings used in the experiments, which are helpful for researchers to enhance

reproducibility and/or reanalysis.
� This data file will be helpful to understand the CutESC algorithm in detail by providing additional information and

experiments.
� This approach works without any prior information and preliminary parameter settings while automatically discovering

clusters with non-uniform densities, arbitrary shapes, and outliers.
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1. Data

This article provides details about a novel algorithm (CutESC) for spatial clustering based on
proximity graphs introduced in Ref. [1]. Moreover, the data in this article describes tables and figures in
support of the article titled “CutESC: Cutting edge spatial clustering technique based on proximity
graphs” [1]. CutESC performs clustering automatically for non-uniform densities, arbitrary shapes, and
outliers without requiring any prior information and preliminary parameters. Besides, the parametric
version of our algorithm (CutESC-P, see Algorithm 1 in 2.1) optionally allows interested users to tune
the clustering process by setting two parameters for specific applications. In 2.1, CutESC-P refers to the
parametric version of our algorithm. Some additional information related to the CutESC algorithm is
provided in 2.2. The 3 thresholding procedures are presented so as to be in a hierarchy. Fig.1 shows that
second and third thresholding rules of the CutESC algorithm are applied in a flipped order. Figs. 2 and 3
show that the CutESC algorithm obtains the optimal solution in the first iteration. The relation between
levels is given at Table 1 where the number of clusters and Calinski-Harabasz score are shown for each
level. We scanned through combinations of values for each algorithm. The best parameter settings for
the experiments are given in 2.3. In the pre-processing step, features are standardized by subtracting
the mean and scaling to unit variance. All features are centered around zero. We scanned through

https://doi.org/10.17632/hkkbnxf4yp.1
https://doi.org/10.17632/hkkbnxf4yp.1
https://doi.org/10.1016/j.patcog.2019.06.014


Fig. 2. Our experiments with different cases show that one iteration is sufficient. It is also a trade-off between uniform (see Fig. 2a)
and non-uniform (see Fig. 2b) scenarios. When the data become more chaotic, the useful information might be hidden in deeper
levels and the algorithm needs to be run more than one iteration. We also provided this option to users for their special applications
(see Algorithm 1 in Section 2.1).

Fig. 1. Second and third thresholding rules of the algorithm are applied in a flipped order. The algorithm mainly follows a top-down
approach, where it first removed global (large scale effect) and later removed local edges (small scale effect), and global level /
connected components (sub-groups) level / neighborhood level. The third rule provides more details to be considered using
second order neighborhood, it is a pruning step for touching problems such as chain and necks. In the last stage of Fig. 1b, it can be
seen that the touching problem (between green connected components (CC) and brown CC) could not be resolved.
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Table 1
Iterative/Nested experiments for Figs. 2a, b and 3, respectively. The high density and high dimensional datasets will increase the
execution time of clustering algorithms as in our case. It is a trade-off between accuracy and speed. As in shown Figs. 2 and 3, the
CutESC algorithm obtains the optimal solution in the first iteration. However, meaningful or useful clusters in the chaotic data
might be hidden in deeper levels. Moreover, while branching to sub-clusters, the goodness of the resulting clusters should not
decrease. Many cluster validation indices have been published in the literature. The CutESC algorithm uses the Calinski-Harabasz
score to evaluate the goodness (see Algorithm 1). While this score is increasing, the iteration will continue. Here, not only one
index but also the combination of indices could be used. The Calinski-Harabasz score is in the range [0, þ∞], a higher score
indicates better clustering. It considers the quality of the distribution of the within-cluster and the between-cluster to define the
score. As seen in the table, Calinski-Harabasz scores do not changewhen iterating in the first case (see Fig. 2a), but the number of
clusters is increasing. In the second example, the score increases, but then it decreases. The second level has better goodness than
other levels (see Fig. 2b). In the last example, the score is constantly decreasing thus the iteration will stop in the first step.

Level 1 Level 2 Level 3

# of Clusters 3 8 9
Calinski-Harabasz 6 6 6
# of Clusters 1 6 4
Calinski-Harabasz 1 18 8
# of Clusters 8 13 19
Calinski-Harabasz 105 57 25

Table 2
Selected Parameters for 3-spiral [5], Aggregation [6], Compound [7], D31 [8], Zelnik4 [9] datasets.

Dataset HDBSCAN DBSCAN OPTICS

3-spiral minClusterSize ¼ 2 eps ¼ 0.1, minPoints ¼ 4 eps ¼ 0.1, minPoints ¼ 3
Aggregation minClusterSize ¼ 12 eps ¼ 0.05, minPoints ¼ 3 eps ¼ 0.082, minPoints ¼ 3
Compound minClusterSize ¼ 3 eps ¼ 0.05, minPoints ¼ 3 eps ¼ 0.1, minPoints ¼ 8
D31 minClusterSize ¼ 6 eps ¼ 0.016, minPoints ¼ 3 eps ¼ 0.013, minPoints ¼ 2
Zelnik4 minClusterSize ¼ 6 eps ¼ 0.075, minPoints ¼ 7 eps ¼ 0.015, minPoints ¼ 3
Scanning Range (2:1:20) (0.01:0.001:0.1), (3:1:10) (0.01:0.001:0.1), (3:1:10)

Table 3
Selected Parameters for Chameleon [3] dataset.

Dataset CutESC-P HDBSCAN DBSCAN OPTICS

t4.8k a ¼ 1, b ¼ 0.8 minClusterSize ¼ 9 eps ¼ 0.015, minPoints ¼ 6 eps ¼ 0.013, minPoints ¼ 1
t5.8k a ¼ 1, b ¼ 0.7 minClusterSize ¼ 6 eps ¼ 0.013, minPoints ¼ 10 eps ¼ 0.013, minPoints ¼ 9
t7.10k a ¼ 0.7, b ¼ 1 minClusterSize ¼ 12 eps ¼ 0.014, minPoints ¼ 7 eps ¼ 0.02, minPoints ¼ 3
t8.8k a ¼ 1, b ¼ 1 minClusterSize ¼ 11 eps ¼ 0.013, minPoints ¼ 3 eps ¼ 0.013, minPoints ¼ 2
Scanning Range (0.1:0.1:1), (0.1:0.1:1) (2:1:20) (0.01:0.001:0.2), (3:1:10) (0.01:0.001:0.2), (3:1:10)

Fig. 3. Running 3 iterations on the synthetic dataset [2] which is used to describe steps of the CutESC algorithm in the paper [1].
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Table 5
Selected Parameters for BSDS500 [10] dataset.

Image Name HDBSCAN DBSCAN OPTICS

8068 minClusterSize ¼ 5 eps ¼ 0.1, minPoints ¼ 3 eps ¼ 0.1, minPoints ¼ 3
42049 minClusterSize ¼ 7 eps ¼ 0.03, minPoints ¼ 3 eps ¼ 0.03, minPoints ¼ 3
108073 minClusterSize ¼ 7 eps ¼ 0.2, minPoints ¼ 3 eps ¼ 0.2, minPoints ¼ 4
260058 minClusterSize ¼ 4 eps ¼ 0.2, minPoints ¼ 3 eps ¼ 0.2, minPoints ¼ 4
300091 minClusterSize ¼ 9 eps ¼ 0.2, minPoints ¼ 3 eps ¼ 0.2, minPoints ¼ 3
Scanning Range (2:1:20) (0.01:0.01:0.2), (3:1:10) (0.01:0.01:0.2), (3:1:10)

Table 6
Selected Parameters for Histological [11] dataset.

Image Name HDBSCAN DBSCAN OPTICS

ih2ycmuhwrgalo minClusterSize ¼ 16 eps ¼ 0.1, minPoints ¼ 3 eps ¼ 0.15, minPoints ¼ 3
pbphl1xujdvyx minClusterSize ¼ 13 eps ¼ 0.3, minPoints ¼ 3 eps ¼ 0.25, minPoints ¼ 3
ebvubdfxocisgny minClusterSize ¼ 13 eps ¼ 0.5, minPoints ¼ 3 eps ¼ 0.25, minPoints ¼ 3
0anzqyibfuc minClusterSize ¼ 8 eps ¼ 0.65, minPoints ¼ 3 eps ¼ 0.65, minPoints ¼ 2
4nkj5wqcqj minClusterSize ¼ 10 eps ¼ 0.35, minPoints ¼ 3 eps ¼ 0.3, minPoints ¼ 6
Scanning Range (2:1:20) (0.1:0.05:1), (3:1:10) (0.1:0.05:1), (3:1:10)

Table 7
Comparison for 3-spiral, Aggregation, Compound, D31, Zelnik4 based on external clustering criteria.

Algorithm 3-spiral Aggregation Compound D31 Zelnik4

F-M ARI AMI F-M ARI AMI F-M ARI AMI F-M ARI AMI F-M ARI AMI

CutESC 1 1 1 0.859 0.802 0.798 0.976 0.968 0.937 0.620 0.571 0.809 1 1 1
HDBSCAN 1 1 1 0.878 0.839 0.868 0.882 0.833 0.822 0.598 0.569 0.819 0.923 0.903 0.899
AUTOCLUST 0.610 0.442 0.476 0.865 0.809 0.799 0.946 0.927 0.905 0.665 0.628 0.813 0.872 0.836 0.649
GDD 1 1 1 0.865 0.809 0.799 0.959 0.944 0.907 0.294 0.109 0.338 0.992 0.990 0.984
DBSCAN 1 1 1 0.865 0.809 0.799 0.961 0.949 0.885 0.652 0.624 0.807 0.935 0.919 0.916
MeanShift 0.330 �0.005 �0.005 0.888 0.847 0.818 0.851 0.778 0.742 0.587 0.525 0.725 0.870 0.833 0.618
OPTICS 1 1 1 0.885 0.852 0.809 0.836 0.757 0.697 0.600 0.531 0.747 1 1 1

Table 8
Comparison for Chameleon datasets based on external clustering criteria.

Algorithm t4.8k t5.8k t7.10k t8.8k

F-M ARI AMI F-M ARI AMI F-M ARI AMI F-M ARI AMI

CutESC 0.916 0.897 0.875 0.940 0.930 0.912 0.890 0.841 0.836 0.978 0.974 0.940
CutESC-P 0.968 0.961 0.935 0.956 0.948 0.924 0.958 0.949 0.936 0.978 0.974 0.940
HDBSCAN 0.958 0.950 0.908 0.926 0.913 0.876 0.953 0.944 0.933 0.937 0.924 0.901
AUTOCLUST 0.939 0.926 0.759 0.909 0.893 0.720 0.890 0.868 0.759 0.797 0.746 0.687
GDD 0.407 0.007 0.021 0.369 0.011 0.063 0.405 0.006 0.988 0.401 0.009 0.022
DBSCAN 0.955 0.946 0.889 0.651 0.595 0.657 0.982 0.978 0.958 0.959 0.950 0.865
MeanShift 0.604 0.512 0.550 0.814 0.777 0.788 0.534 0.440 0.575 0.538 0.402 0.438
OPTICS 0.952 0.943 0.832 0.650 0.594 0.657 0.963 0.955 0.831 0.959 0.950 0.868

Table 4
Selected Parameters for UCI [4] datasets.

Dataset HDBSCAN DBSCAN OPTICS

Dermatology minClusterSize ¼ 5 eps ¼ 0.5, minPoints ¼ 5 eps ¼ 0.9, minPoints ¼ 10
Ionosphere minClusterSize ¼ 10 eps ¼ 0.3, minPoints ¼ 10 eps ¼ 0.1, minPoints ¼ 5
Heart-Statlog minClusterSize ¼ 10 eps ¼ 0.5, minPoints ¼ 9 eps ¼ 0.5, minPoints ¼ 8
Cardiac-Arrhythmia minClusterSize ¼ 5 eps ¼ 0.3, minPoints ¼ 5 eps ¼ 0.5, minPoints ¼ 8
Thyroid-Allbp minClusterSize ¼ 10 eps ¼ 0.3, minPoints ¼ 10 eps ¼ 0.2, minPoints ¼ 10
Scanning Range (2:1:10) (0.1:0.1:1), (3:1:10) (0.1:0.1:1), (3:1:10)
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Table 9
Comparison for Real-World datasets based on external clustering criteria. At the bottom of table, the number of groups detected after the proposed algorithm (CutESC) of each one of the 3
clustering criteria which are global edges, local edges and local inner edges, respectively.

Algorithm Dermatology Ionosphere Heart-Statlog Cardiac-Arrhythmia Thyroid-Allbp

Jaccard Precision Recall Jaccard Precision Recall Jaccard Precision Recall Jaccard Precision Recall Jaccard Precision Recall

CutESC 0.555 0.585 0.915 0.570 0.612 0.892 0.495 0.505 0.959 0.356 0.360 0.967 0.335 0.399 0.675
HDBSCAN 0.417 0.511 0.693 0.379 0.577 0.526 0.384 0.537 0.575 0.323 0.323 1 0.061 0.485 0.066
DBSCAN 0.199 0.199 1 0.496 0.529 0.887 0.384 0.504 0.617 0.323 0.323 1 0.173 0.494 0.211
MeanShift 0.199 0.199 1 0.538 0.538 1 0.494 0.508 0.949 0.323 0.323 1 0.319 0.389 0.637
OPTICS 0.269 0.279 0.888 0.538 0.538 1 0.403 0.503 0.671 0.323 0.323 1 0.265 0.452 0.390
AUTOCLUST e e e e e e e e e e e e e e e

GDD e e e e e e e e e e e e e e e

CutESC Step 1 Step 2 Step 3 Step 1 Step 2 Step 3 Step 1 Step 2 Step 3 Step 1 Step 2 Step 3 Step 1 Step 2 Step 3
# of groups 4 4 4 2 2 2 2 2 2 2 2 2 4 4 4
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Table 10
The number of instances that were attributed to each cluster as comparedwith the ground truth. In this table, rows represent the
true class while columns are the predicted class. The values are reported using the contingency matrix which is used in statistics
to define association between two partitions. In a clustering problem, true label names and predicted ones do not need to be the
same, the assumptions are unclear. The number of clusters might not even be the same as true classes. According to this table,
Cardiac-Arrhythmia dataset has 13 true classes however it is reported 16 in the UCI repository. The reason is that 3 classes (1.
Degree AtrioVentricular block, 2. Degree AV block, 3. Degree AV block) actually include 0 instances in the dataset.

True Class Dermatology Ionosphere Heart-Statlog Cardiac-Arrhythmia Thyroid-Allbp

1 2 3 4 1 2 1 2 1 2 1 2 3 4

1 6 0 106 0 43 83 2 148 2 243 183 1228 154 67
2 2 59 0 0 0 225 4 116 1 24 25 65 1 0
3 4 0 0 68 e e e e 0 3 8 265 1 1
4 0 49 0 0 e e e e 0 2 1 29 1 0
5 2 50 0 0 e e e e 8 1 38 718 3 12
6 20 0 0 0 e e e e 5 45 e e e e

7 e e e e e e e e 0 4 e e e e

8 e e e e e e e e 0 5 e e e e

9 e e e e e e e e 2 20 e e e e

10 e e e e e e e e 6 38 e e e e

11 e e e e e e e e 5 10 e e e e

12 e e e e e e e e 0 15 e e e e

13 e e e e e e e e 3 10 e e e e
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combinations of values for each algorithm to find the best parameter settings. Table 2 shows selected
parameters for 3-spiral [5], Aggregation [6], Compound [7], D31 [8], Zelnik4 [9] datasets. Table 3 shows
selected parameters for Chameleon [3] dataset. Table 4 shows selected parameters for UCI (Derma-
tology, Ionosphere, Heart-Statlog, Cardiac-Arrhythmia, Thyroid-Allbp) [4] datasets. Table 5 shows
selected parameters for BSDS500 [10] dataset. Table 6 shows selected parameters for Histological [11]
dataset. Other details on external clustering criteria are reported in Tables 7 and 8 of 2.4. The additional
analysis for Real-World datasets based on external clustering criteria is included in 2.5. Table 9 includes
the comparison for Real-World datasets based on external clustering criteria. Table 10 includes the
number of instances that were attributed to each cluster as compared with the ground truth for Real-
World datasets. The external clustering criteria of the image segmentation datasets is given in Tables 11
and 12 of 2.6.
2. Experimental design, materials, and methods

2.1. The CutESC algorithm with optional configurations

The CutESC (Cut-Edge for Spatial Clustering) algorithmwith a graph-based approach is presented in
[1]. This novel algorithm performs clustering automatically for outliers, complex shapes and irregular
densities without requiring any prior information and parameters. Additionally, users can provide their
own parameters to tune the clustering process by setting two parameters for specific applications.
CutESC-P refers to the parametric version of our algorithm, see Algorithm 1.

Algorithm 1. Pseudocode of the CutESC-P Algorithm.
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2.2. Various experiments on the CutESC algorithm

In this section, some additional information related to the CutESC algorithm is provided in detail.
The presented algorithm includes 3-step thresholding procedures which should be applied in a hier-
archy. In Fig. 1, the second and third thresholding rules of the CutESC algorithm are applied in a flipped
order. Also, the CutESC algorithm can be computed iteratively. In Figs. 2 and 3, the CutESC algorithm
obtains the optimal solution in the first iteration (level 1). The relation between the levels/iterations is
given in Table 1, where the number of clusters and Calinski- Harabasz score are shown for each level/
iteration.
2.3. Selected parameters for several datasets

The best parameter settings for the experiments are given in this section. To find the best param-
eters, we scanned through combinations of values for each algorithm. In the pre-processing step,
features are standardized by subtracting the mean and scaling to unit variance, and all features are
centered around zero. The best parameters for 3-spiral [5], Aggregation [6], Compound [7], D31 [8], and
Zelnik4 [9] datasets are given at Table 2. Table 3 shows the best parameters for Chameleon [3] dataset.
Table 4 shows the best parameters for UCI (Dermatology, Ionosphere, Heart-Statlog, Cardiac-
Arrhythmia, Thyroid-Allbp) [4] datasets. Table 5 shows the best parameters for BSDS500 [10] dataset.
Finally, the best parameters for Histological [11] dataset are given at Table 6.
2.4. Additional experiments on external clustering criteria

External clustering criteria validate the experiments based on previous knowledge about data,
when the ground truth data is known, and the predicted clusters are compared to the true one (see [1]
for more details). Other details on external clustering criteria are reported in Tables 7 and 8.We can see
that our method is highly competitive and outperforms other methods on some datasets in terms of
external clustering criteria.



Table 11
Comparison for 5 selected images from BSDS500 dataset based on external clustering criteria.

Algorithm 8068 42049 108073 260058 300091

Dice Precision Recall ARI AMI Dice Precision Recall ARI AMI Dice Precision Recall ARI AMI Dice Precision Recall ARI AMI Dice Precision Recall ARI AMI

CutESC 0.933 0.941 0.924 0.886 0.685 0.926 0.953 0.901 0.904 0.743 0.855 0.783 0.941 0.551 0.366 0.807 0.717 0.923 0.686 0.568 0.907 0.997 0.833 0.756 0.490
HDBSCAN 0.846 0.815 0.880 0.730 0.550 0.532 0.407 0.768 0.316 0.283 0.835 0.729 0.976 0.430 0.267 0.783 0.653 0.976 0.631 0.420 0.681 0.928 0.538 0.362 0.294
AUTOCLUST 0.735 0.612 0.919 0.475 0.416 0.474 0.318 0.934 0.177 0.222 0.836 0.781 0.899 0.511 0.375 0.854 0.784 0.937 0.767 0.613 0.905 0.980 0.840 0.743 0.534
GDD 0.853 0.801 0.912 0.737 0.592 0.378 0.290 0.546 0.091 0.142 0.834 0.797 0.876 0.528 0.284 0.769 0.667 0.909 0.618 0.464 0.750 0.883 0.652 0.406 0.354
DBSCAN 0.848 0.815 0.883 0.733 0.566 0.505 0.385 0.733 0.274 0.253 0.861 0.795 0.940 0.576 0.341 0.806 0.703 0.945 0.680 0.471 0.886 0.977 0.810 0.701 0.484
MeanShift 0.840 0.818 0.863 0.723 0.522 0.525 0.389 0.807 0.294 0.304 0.839 0.744 0.963 0.465 0.284 0.708 0.718 0.697 0.558 0.456 0.623 0.903 0.475 0.288 0.209
OPTICS 0.845 0.813 0.880 0.729 0.562 0.494 0.371 0.741 0.253 0.213 0.857 0.797 0.927 0.570 0.303 0.802 0.716 0.913 0.679 0.448 0.883 0.976 0.806 0.694 0.479
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Table 12
Comparison for 5 selected images from Histological dataset based on external clustering criteria.

Algorithm ih2ycmuhwrgalo pbphl1xujdvyx ebvubdfxocisgny 0anzqyibfuc 4nkj5wqcqj

Dice Precision Recall ARI AMI Dice Precision Recall ARI AMI Dice Precision Recall ARI AMI Dice Precision Recall ARI AMI Dice Precision Recall ARI AMI

CutESC 0.889 0.973 0.818 0.785 0.490 0.937 0.909 0.968 0.697 0.421 0.948 0.959 0.938 0.700 0.400 0.973 0.965 0.981 0.769 0.529 0.947 0.932 0.964 0.667 0.433
HDBSCAN 0.870 0.877 0.863 0.725 0.562 0.876 0.959 0.805 0.582 0.359 0.953 0.943 0.963 0.692 0.453 0.973 0.962 0.985 0.765 0.510 0.899 0.937 0.864 0.509 0.292
AUTOCLUST 0.681 0.539 0.925 0.032 0.026 0.906 0.888 0.925 0.563 0.313 0.929 0.936 0.922 0.578 0.324 0.971 0.969 0.973 0.758 0.527 0.913 0.889 0.938 0.421 0.309
GDD 0.689 0.530 0.987 �0.004 0.004 0.834 0.961 0.736 0.501 0.279 0.921 0.961 0.884 0.598 0.368 0.863 0.972 0.776 0.383 0.259 0.703 0.942 0.561 0.222 0.151
DBSCAN 0.856 0.876 0.837 0.701 0.516 0.900 0.837 0.974 0.422 0.211 0.951 0.935 0.969 0.669 0.496 0.973 0.959 0.987 0.753 0.499 0.930 0.906 0.956 0.533 0.298
MeanShift 0.894 0.881 0.906 0.770 0.626 0.799 0.950 0.689 0.431 0.244 0.949 0.955 0.942 0.694 0.519 0.957 0.969 0.945 0.679 0.464 0.937 0.896 0.982 0.530 0.284
OPTICS 0.870 0.857 0.884 0.718 0.600 0.899 0.839 0.967 0.425 0.210 0.945 0.958 0.933 0.683 0.441 0.972 0.963 0.982 0.759 0.491 0.910 0.939 0.882 0.543 0.315
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2.5. Additional experiments on multidimensional datasets

In this section, the additional analysis for Real-World datasets based on external clustering criteria
is included. The comparison for Real-World datasets based on external clustering criteria is included in
Table 9. Table 10 includes the number of instances that were attributed to each cluster as compared
with the ground truth for Real-World datasets.

2.6. External clustering criteria for selected images from BSDS500 and histological datasets

In this section, the external clustering criteria of some selected images from these image seg-
mentation datasets are given in Tables 11 and 12, where our algorithm outperforms other methods.
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