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Abstract. In this paper, we compute various binomial-double-sums

involving the Fibonacci numbers as well as their alternating anal-

ogous. It would be interesting that all sums we shall compute are
evaluated in nice multiplication forms in terms of again the Fibonacci

and Lucas numbers.

1. Introduction

Define second order linear recurrences {Un, Vn} as for n > 0

Un = pUn−1 + Un−2,

Vn = pVn−1 + Vn−2,

where U0 = 0, U1 = 1, and V0 = 2, V1 = p, resp.
If p = 1, then Un = Fn (nth Fibonacci number) and Vn = Ln (nth Lucas

number). The Binet formulæ are

Fn =
αn − βn

α− β
and Ln = αn + βn,

where α, β =
(
1±
√

5
)
/2.

By the Binet formulæ of Fn and Ln, for later use one can see that

F−n = (−1)n+1Fn and L−n = (−1)nLn.

Much recently, Kılıç and Taşdemir [1] consider and compute various sum
families of binomial sums namely binomial-double-sums including double
sums and one binomial coefficient of the forms∑

0≤i,j≤n

(
i

j

)
Uri+tj ,

∑
0≤i,j≤n

(
i

j

)
Vri+tj

as well as their alternating analogues∑
0≤i,j≤n

(
i

j

)
(−1)

i
Uri+tj ,

∑
0≤i,j≤n

(
i

j

)
(−1)

i
Vri+tj
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for some integers r and t.
For example, they showed that let t and r be odd integers. For nonneg-

ative even k,∑
0≤i,j≤k

(
i

j

)
Uri+2tj =

∆
k
2Uk+1

t

[
V(t+r)(k+1) + ∆UtUk(t+r)

]
− UtVt+r

∆U2
t + ∆UtUt+r − 1

and ∑
0≤i,j≤k

(
i

j

)
Vri+2tj

=
∆

k
2 +1Uk+1

t

[
UtVk(t+r) + U(t+r)(k+1)

]
+ ∆UtUt+r − 2

∆U2
t + ∆UtUt − 1

.

For positive odd k,∑
0≤i,j≤k

(
i

j

)
Uri+2tj =

∆
k+1
2 Uk+1

t

[
UtVk(t+r) + U(t+r)(k+1)

]
− UtVt+r

∆U2
t + ∆UtUt+r − 1

and ∑
0≤i,j≤k

(
i

j

)
Vri+2tj

=
∆

k+1
2 Uk+1

t [∆UtUk(t+r) + V(t+r)(k+1)] + ∆UtUt+r − 2

∆U2
t + ∆UtUt+r − 1

.

The authors of [1] also compute other kinds alternating analogues of

these sums whose signs are of the forms (−1)
j

and (−1)
i+j

. These sums
are evaluated via certain linear combinations of terms Un and Vn that are
not in multiplication form. Also for earlier similar binomial sums families,
we could refer to the reference list of [1].

In this paper, as a second part of binomial-double-sums, we present sums
families including the Fibonacci numbers. But in this part, all sums we
shall compute are evaluated in nice multiplication form in terms of again
the Fibonacci and Lucas numbers.

2. Binomial-Double-Sums with the Fibonacci Numbers

In this section, we will present our binomial-double-sums including the
Fibonacci numbers. By the Binomial theorem, first we start with recalling
an auxiliary lemma from [1].

Lemma 1. For any real numbers x and y such that x(1 + y) 6= 1∑
0≤i,j≤k

(
i

j

)
xiyj =

(x+ xy)
k+1 − 1

x+ xy − 1
.
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As some consequences of Lemma 1, for later use, we could note the
following identities:

(2.1)
∑

0≤i,j≤k

(
i

j

)
(−1)ixiyj =

(−1)k (x+ xy)
k+1

+ 1

x+ xy + 1
, x(1 + y) 6= −1,

(2.2)
∑

0≤i,j≤k

(
i

j

)
(−1)jxiyj =

(x− xy)
k+1 − 1

x− xy − 1
, x(1− y) 6= 1,

and

(2.3)
∑

0≤i,j≤k

(
i

j

)
(−1)i+jxiyj =

(−1)k (x− xy)
k+1

+ 1

x− xy + 1
, x(1− y) 6= −1.

For later use, we also present a Fibonacci-Lucas identity. As a showcase,
we give a proof for the first item of the following Lemma and the others
could be proven similarly.

Lemma 2. For integers m and n,

F2(m+n) − F2m − F2n =

 5FmFnFm+n if m and n are even,
LmLnFm+n if m and n are odd,
LmFnLm+n if m is odd and n is even.

Proof. By α − β =
√

5 and αβ = −1, consider the RHS of the claim for
even m and n,

5FmFnFm+n

=
5(αm − βm)(αn − βn)(αm+n − βm+n)

(α− β)3

=
(αm+n + βm+n − (αβ)m(βn−m + αn−m))(αm+n − βm+n)

α− β

=
α2m+2n − β2m+2n − (α2n − β2n + (αβ)n(β−mαm − α−mβm))

α− β

=
α2m+2n − β2m+2n − (α2n − β2n)− (α2m − β2m)

α− β
= F2m+2n − F2n − F2m,

as claimed. �

We already have the following two lemmas from [2].

Lemma 3. For any integers m and n,

Fn+m − (−1)mFn−m = FmLn,

Fn+m + (−1)mFn−m = LmFn.
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Lemma 4. For any integer n,

L2n − 2(−1)n = 5F 2
n and L2n + 2(−1)n = L2

n.

Now we shall give our first result.

Theorem 1. For all nonnegative integer n and any integer t

(1)

∑
0≤i,j≤n

(
i

j

)
Fi+j =

1

2


F 3n

2
L 3n+4

2
if n ≡ 0(mod 4),

F 3n+1
2
L 3(n+1)

2
if n ≡ 1(mod 4),

L 3n
2
F 3n+4

2
if n ≡ 2(mod 4),

L 3n+1
2
F 3(n+1)

2
if n ≡ 3(mod 4).

(2)∑
0≤i,j≤n

(
i

j

)
F4ti+j =

1

L2t+1

{
F(2t+1)nL(2t+1)(n+1) if n is even,
L(2t+1)nF(2t+1)(n+1) if n is odd.

(3) ∑
0≤i,j≤n

(
i

j

)
F2(2t+1)i+j =

F2n(t+1)F2(n+1)(t+1)

F2(t+1)
(for t 6= −1).

(4) ∑
0≤i,j≤n

(
i

j

)
Fj =

{
FnLn+1 if n is even,
LnFn+1 if n is odd.

(5)

∑
0≤i,j≤n

(
i

j

)
F2i−j =

1

2


F 3n

2
L 3n+4

2
if n ≡ 0(mod 4),

F 3n+1
2
L 3(n+1)

2
if n ≡ 1(mod 4),

L 3n
2
F 3n+4

2
if n ≡ 2(mod 4),

L 3n+1
2
F 3(n+1)

2
if n ≡ 3(mod 4).

(6)∑
0≤i,j≤n

(
i

j

)
F(4t+1)i−j =

1

L2t+1

{
F(2t+1)nL(2t+1)(n+1) if n is even,
L(2t+1)nF(2t+1)(n+1) if n is odd.

(7) ∑
0≤i,j≤n

(
i

j

)
F(4t+3)i−j =

F2n(t+1)F2(n+1)(t+1)

F2(t+1)
(for t 6= −1).



ON BINOMIAL DOUBLE SUMS 5

Proof. We only prove the first and third identities. We choose the first
item of the first identity. If n ≡ 0(mod 4), then assume that n = 4k for
k ∈ Z. Thus we write∑

0≤i,j≤n

(
i

j

)
Fi+j =

∑
0≤i,j≤4k

(
i

j

)
Fi+j =

1

α− β
∑

0≤i,j≤4k

(
i

j

)
(αi+j − βi+j)

=
1

α− β

 ∑
0≤i,j≤4k

(
i

j

)
αi+j −

∑
0≤i,j≤4k

(
i

j

)
βi+j

 ,
which, by Lemma 1, equals

1

α− β

[(
α+ α2

)4k+1 − 1

α+ α2 − 1
−
(
β + β2

)4k+1 − 1

β + β2 − 1

]
,

which, by α2 = α + 1, α2 + α− 1 = 2α, β2 = β + 1 and β2 + β − 1 = 2β,
equals

1

α− β

[
α12k+3 − 1

2α
− β12k+3 − 1

2β

]
= − 1

2(α− β)
(−α12k+2 + β12k+2 + α− β)

=
1

2

[
α12k+2 − β12k+2

α− β
− 1

]
=

1

2
(F12k+2 − 1),

which, by Lemma 3, with the case m = 6k and n = 6k + 2, gives us∑
0≤i,j≤4k

(
i

j

)
Fi+j =

1

2
F6kL6k+2

or, for n = 4k, ∑
0≤i,j≤n

(
i

j

)
Fi+j =

1

2
F 3n

2
L 3n+4

2
,

as claimed.
Now we prove the third identity. Similarly we write∑
0≤i,j≤n

(
i

j

)
F(4t+2)i+j =

1

α− β
∑

0≤i,j≤n

(
i

j

)(
α(4t+2)i+j − β(4t+2)i+j

)

=
1

α− β

[(
α4t+2 + α4t+3

)n+1 − 1

α4t+2 + α4t+3 − 1
−
(
β4t+2 + β4t+3

)n+1 − 1

β4t+2 + β4t+3 − 1

]
which, since α2 = α+ 1 and β2 = β + 1, equals

1

α− β

[
α(4t+4)(n+1) − 1

α4t+4 − 1
− β(4t+4)(n+1) − 1

β4t+4 − 1

]
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=
1

α− β

× β4tn+4t+4n+4 − α4tn+4t+4n+4 + α4tn+4n − β4tn+4n + α4t+4 − β4t+4

2− (α4t+4 + β4t+4)

=
1

2− L4t+4
(−F4tn+4t+4n+4 + F4tn+4n + F4t+4)

=
1

L4t+4 − 2
(F4tn+4t+4n+4 − F4tn+4n − F4t+4)

=
1

L4t+4 − 2

(
F4(t+1)(n+1) − F4n(t+1) − F4(t+1)

)
,

which, by Lemma 2, equals

5F2(t+1)(n+1)F2n(t+1)F2(t+1)

L4t+4 − 2
,

which, by Lemma 4, gives us the claim as∑
0≤i,j≤n

(
i

j

)
F2(2t+1)i+j =

F2n(t+1)F2(n+1)(t+1)

F2(t+1)
.

For the others, we only give some hints. The proofs of (2), (6) and (7) follow
from Lemmas 1,2 and 4. The proofs of (4) and (5) follow from Lemmas 1
and 3. �

3. Alternating analogues of Binomial-Double-Sums

In this section, we present various alternating binomial double sums
including the Fibonacci numbers. Now we continue to give some auxiliary
Fibonacci-Lucas identities. As a showcase, we only prove Lemma 7. The
others could be easily and similarly proven.

Lemma 5. For odd integer m and even integer n,

F2(m+n) − F2m + F2n = 5FmFnFm+n.

Lemma 6. For even integers m and n,

F2(m+n) + F2m − F2n = FmLnLm+n,

Lemma 7. For integers m and n,

F2(m+n) + F2m + F2n =

{
5FmFnFm+n if m and n are odd,
LmLnFm+n if m and n are even.

Proof. We only give the proof for the case m and n are odd. Consider the
RHS of the claim by the Binet formula and αβ = −1 for odd integers m
and n,

5FmFnFm+n
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=
5(αm − βm)(αn − βn)(αm+n − βm+n)

(α− β)3

=
(αm+n + βm+n − (αβ)m(βn−m + αn−m))(αm+n − βm+n)

α− β

=
α2m+2n − β2m+2n − (−1)m(α2n − β2n + (αβ)n(β−mαm − α−mβm))

α− β

=
α2m+2n − β2m+2n − (−1)m(α2n − β2n − (−1)n(α2m − β2m))

α− β

=
α2m+2n − β2m+2n + α2n − β2n + α2m − β2m

α− β
= F2m+2n + F2n + F2m,

as claimed. �

Now we shall give our main result.

Theorem 2. For all nonnegative integer n and any integer t,

(1)

∑
0≤i,j≤n

(
i

j

)
(−1)iFi+j =

(−1)n

2


F 3n

2
L 3n+2

2
if n ≡ 0(mod 4),

F 3n−1
2
L 3(n+1)

2
if n ≡ 1(mod 4),

L 3n
2
F 3n+2

2
if n ≡ 2(mod 4),

L 3n−1
2
F 3(n+1)

2
if n ≡ 3(mod 4).

(2)

∑
0≤i,j≤n

(
i

j

)
(−1)iF4ti+j =

(−1)nF(2t+1)nF(2t+1)(n+1)

F2t+1
.

(3)

∑
0≤i,j≤n

(
i

j

)
(−1)iF(4t+2)i+j

=
(−1)n

L2(t+1)

{
L2(n+1)(t+1)F2n(t+1) if n is even,
F2(n+1)(t+1)L2n(t+1) if n is odd.

(4) ∑
0≤i,j≤n

(
i

j

)
(−1)iFj = (−1)nFnFn+1.
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(5)

∑
0≤i,j≤n

(
i

j

)
(−1)iF2i−j =

(−1)n

2


F 3n

2
L 3n+2

2
if n ≡ 0(mod 4),

F 3n−1
2
L 3(n+1)

2
if n ≡ 1(mod 4),

L 3n
2
F 3n+2

2
if n ≡ 2(mod 4),

L 3n−1
2
F 3(n+1)

2
if n ≡ 3(mod 4).

(6) ∑
0≤i,j≤n

(
i

j

)
(−1)iF(4t+1)i−j =

(−1)nF(2t+1)nF(2t+1)(n+1)

F2t+1
.

(7) ∑
0≤i,j≤n

(
i

j

)
(−1)iF(4t+3)i−j

=
(−1)n

L2(t+1)

{
L2(n+1)(t+1)F2n(t+1) if n is even,
F2(n+1)(t+1)L2n(t+1) if n is odd.

Proof. We only prove the second identity. Consider∑
0≤i,j≤n

(
i

j

)
(−1)iF4ti+j =

1

α− β
∑

0≤i,j≤n

(
i

j

)
(−1)i(α4ti+j − β4ti+j)

=
1

α− β

 ∑
0≤i,j≤n

(
i

j

)
(−1)iα4ti+j −

∑
0≤i,j≤n

(
i

j

)
(−1)iβ4ti+j

 ,
which, by Eq. (2.1), equals

1

α− β

[
(−1)n

(
α4t + α4t+1

)n+1
+ 1

α4t + α4t+1 + 1
−

(−1)n
(
β4t + β4t+1

)n+1
+ 1

β4t + β4t+1 + 1

]
,

which, by α2 = α+ 1 and β2 = β + 1, equals

(−1)n

α− β

[
α(4t+2)(n+1) + (−1)n

α4t+2 + 1
− β(4t+2)(n+1) + (−1)n

β4t+2 + 1

]
=

(−1)n

α− β

[
α4tn+4t+2n+2 + (−1)n

α4t+2 + 1
− β4tn+4t+2n+2 + (−1)n

β4t+2 + 1

]
=

(−1)n

(α4t+2 + β4t+2 + 2) (α− β)

× (α4tn+2n − β4tn+2n + (−1)nβ4t+2

− (−1)nα4t+2 + α4tn+4t+2n+2 − β4tn+4t+2n+2),
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which, by the Binet formulæ of {Fn, Ln}, equals

(−1)n

L4t+2 + 2
(F4tn+4t+2n+2 − (−1)nF4t+2 + F4tn+2n),

which, by Lemmas 7,5 and 4, equals

5(−1)n

L4t+2 + 2
F2tn+2t+n+1F2t+1F2tn+n =

(−1)n

F2t+1
F(2t+1)nF(2t+1)(n+1),

as claimed.
The others could be similarly proven. We only give hints for them. The

proofs of (1) and (5) follow from Eq. (2.1) and Lemma 3. The proofs of
(3) and (7) follow from Eq. (2.1), and, Lemmas 4,7 and 6. The proof of
(4) follows from Eq. (2.1), and, Lemmas 7 and 5. The proof of (6) follows
from Eq. (2.1), and, Lemmas 4,7 and 5. �

Now, by using Eq. (2.2) and Lemma 3 , we give our other result without
proof.

Theorem 3. For nonnegative integer n,

(1)

∑
0≤i,j≤n

(
i

j

)
(−1)jFj = −


Fn

2
Ln+4

2
if n ≡ 0(mod 4),

Fn+3
2
Ln+1

2
if n ≡ 1(mod 4),

Ln
2
Fn+4

2
if n ≡ 2(mod 4),

Ln+3
2
Fn+1

2
if n ≡ 3(mod 4).

(2) i) ∑
0≤i,j≤n

(
i

j

)
(−1)jFi+j = 0.

ii) ∑
0≤i,j≤n

(
i

j

)
(−1)jF2i−j = 0.

By using Eq. (2.3) and Lemma 3, we give our last result without proof.

Theorem 4. For nonnegative integer n,

(1)

∑
0≤i,j≤n

(
i

j

)
(−1)i+jFj = (−1)n+1


Fn

2
Ln−2

2
if n ≡ 0(mod 4),

Fn−3
2
Ln+1

2
if n ≡ 1(mod 4),

Ln
2
Fn−2

2
if n ≡ 2(mod 4),

Ln−3
2
Fn+1

2
if n ≡ 3(mod 4).
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(2) i) ∑
0≤i,j≤n

(
i

j

)
(−1)i+jFi+j = 0.

ii) ∑
0≤i,j≤n

(
i

j

)
(−1)i+jF2i−j = 0.

As a final note, we would like to mention that we frequently compute the
sums including Fibonacci numbers rather than Lucas numbers. We leave to
compute sums including the Lucas numbers. We hope that such sums have
nice multiplication forms that could be found and added to the literature.
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[1] E. Kılıç and F. Taşdemir, On binomial double sums with Fibonacci and Lucas
numbers-I, to appear in Ars Combin.

[2] S. Vajda, Fibonacci & Lucas numbers, and the golden section: John Wiley & Sons,

Inc., New York, 1989.

TOBB Economics and Technology University, Mathematics Department, 06560
Ankara, Turkey

E-mail address: ekilic@etu.edu.tr

Bozok University, Department of Mathematics, Yozgat, Turkey

E-mail address: funda.tasdemir@bozok.edu.tr


