ON BINOMIAL DOUBLE SUMS WITH FIBONACCI AND
 LUCAS NUMBERS-I

EMRAH KILIÇ AND FUNDA TAŞDEMİR

Abstract

In this paper, we compute various binomial double sums involving the generalized Fibonacci and Lucas numbers as well as their alternating analogous.

1. Introduction

Define second order linear recurrences $\left\{U_{n}, V_{n}\right\}$ as for $n>0$

$$
\begin{aligned}
U_{n} & =p U_{n-1}+U_{n-2} \\
V_{n} & =p V_{n-1}+V_{n-2}
\end{aligned}
$$

where $U_{0}=0, U_{1}=1$, and $V_{0}=2, V_{1}=p$, resp. If $p=1$, then $U_{n}=$ F_{n} (nth Fibonacci number) and $V_{n}=L_{n}$ (nth Lucas number). For various properties of these sequences and their generalizations, we could refer to $[4,5,15]$.

The Binet formulæ are

$$
U_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta} \text { and } V_{n}=\alpha^{n}+\beta^{n}
$$

where $\alpha, \beta=(p \pm \sqrt{\triangle}) / 2$ and $\triangle=p^{2}+4$.
By the Binet formulae of U_{n} and V_{n}, for later use one can see that

$$
U_{-n}=(-1)^{n+1} U_{n} \text { and } V_{-n}=(-1)^{n} V_{n}
$$

There are many types of identities involving sums of products of binomial coefficients and Fibonacci or Lucas numbers (for more details see [1, 2, 14, 16]). For example from [1], we recall that

$$
\begin{gathered}
\sum_{k=0}^{n}\binom{n}{k} F_{k}=F_{2 n}, \sum_{k=0}^{n}\binom{n}{k} F_{4 k}=3^{n} F_{2 n} \\
\sum_{k=0}^{n}\binom{n}{k} 2^{n-k} F_{5 k}=5^{n} F_{2 n}, \sum_{k=0}^{n}\binom{n}{k} 3^{n-k} F_{6 k}=8^{n} F_{2 n},
\end{gathered}
$$

[^0]$$
\sum_{k=0}^{n}\binom{n}{k}(-2)^{k} F_{2 k}=(-1)^{n} F_{3 n}, \sum_{k=0}^{n}\binom{n}{k}(-2)^{k} F_{5 k}=(-1)^{n} 5^{n} F_{3 n}
$$

Meanwhile many authors have computed various weighted binomial sums by various methods (for more details, see [12, 13]). For example, in [13], the authors studied the sums have the forms

$$
\sum_{i=0}^{n}\binom{n}{i} T_{k(a+b i)} T_{k(c+d i)} \text { and } \sum_{i=0}^{n}\binom{n}{i}(-1)^{i} T_{k(a+b i)} T_{k(c+d i)},
$$

where T_{n} is either U_{n} or V_{n}.
It is assumed that the reader is familiar with the basic facts about binomial sums, the Binomial theorem, combinatorial summation formulæ, etc. (we could refer to [3]).

Kıliç et. al. [8] proved general expansion formulæ for binomial sums of powers of Fibonacci and Lucas numbers as shown

$$
\sum_{k=0}^{n}\binom{n}{k} F_{(2 k+\delta) t}^{2 m+\varepsilon}, \quad \sum_{k=0}^{n}\binom{n}{k} L_{(2 k+\delta) t}^{2 m+\varepsilon}
$$

and

$$
\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} F_{(2 k+\delta) t}^{2 m+\varepsilon}, \sum_{k=0}^{n}\binom{n}{k}(-1)^{k} L_{(2 k+\delta) t}^{2 m+\varepsilon},
$$

where t is a positive integer and $\delta, \varepsilon \in\{0,1\}$.
In [11] Kılıç and Ionascu established some identities containing sums of binomials with coefficients satisfying third order linear recursive relations. For example, we recall one result from [11]: for any $a \in \mathbb{C} \backslash\{0\}$,

$$
\sum_{k=0}^{n}\binom{2 n}{n+k}\left(a^{k}+a^{-k}\right)=\frac{1}{a^{n}}(a+1)^{2 n}+\binom{2 n}{n}
$$

Khan and Kwong [6] studied two kinds of binomial sums

$$
\sum_{h=0}^{n} h^{m}\binom{n}{h} U_{h} \text { and } \sum_{h=0}^{n}(-1)^{n+h} h^{m}\binom{n}{h} U_{h}
$$

and then express them in terms of two associated sequences.
Kılıç and Arıkan [9] derived new double binomial sums families related with generalized second, third and certain higher order linear recurrences. For example,

$$
\sum_{1 \leq i, j \leq n}\binom{n-j}{j}\binom{i+j}{j}(-1)^{i}=F_{n+1}
$$

and

$$
\sum_{1 \leq i, j \leq n}\binom{i}{j-1}=F_{n+3}-1
$$

Kıliç and Belbachir [10] derived various double binomial sums and binomial sums with complex coefficients related with the sequences $\left\{U_{n}, V_{n}\right\}$. For example, they showed that

$$
\sum_{i, j}\binom{n-i}{j}\binom{n-j}{i}=F_{2 n+2}
$$

Recently, Kılıç [7] considered and computed three classes of generalized alternating weighted binomial sums of the forms

$$
\sum_{i=0}^{n}\binom{n}{i}(-1)^{i} f(n, i, k, t)
$$

where $f(n, i, k, t)$ is $U_{k t i} V_{k n-k(t+2) i}, U_{k t i} V_{k n-k t i}$ and $U_{t k i} V_{(k+1) t n-(k+2) t i}$.
Much recently, Kılıç and Arıkan [9] also considered and computed various interesting families of binomial sums namely binomial-double-sums including double sums and one binomial coefficient. For example they showed that

$$
\begin{gathered}
\sum_{0 \leq i, j \leq n}\binom{n+i}{j-i}=F_{2 n+3}-2^{n}, \quad \sum_{0 \leq i, j \leq n}\binom{n+i}{j-i}(-1)^{j}=(-1)^{n} F_{2 n} \\
\sum_{0 \leq i, j \leq n}\binom{i+j}{i-j}=F_{2 n+2} \quad \text { and } \sum_{0 \leq i, j \leq n}\binom{i}{j-i}=F_{n+3}-1 .
\end{gathered}
$$

These are the first interesting examples of double sums with one binomial coefficient.

In this paper, inspiring from the results of [9] about double sums with one binomial coefficient, we shall consider new kinds of binomial-double-sums families with general Fibonacci and Lucas numbers.

2. Binomial-Double-Sums with the Generalized Fibonacci And Lucas Numbers

First we give some auxiliary lemmas before our main results.
Lemma 1. For any real numbers x and y such that $x(1+y) \neq 1$.

$$
\sum_{0 \leq i, j \leq k}\binom{i}{j} x^{i} y^{j}=\frac{(x+x y)^{k+1}-1}{x+x y-1}
$$

Proof. By the Binomial theorem and some properties of sigma notation, we write

$$
\sum_{0 \leq i, j \leq k}\binom{i}{j} x^{i} y^{j}=\sum_{0 \leq i \leq k} x^{i} \sum_{0 \leq j \leq i}\binom{i}{j} y^{j}=\sum_{i=0}^{k} x^{i}(1+y)^{i}
$$

$$
=\sum_{i=0}^{k}(x(1+y))^{i}=\frac{(x+x y)^{k+1}-1}{x+x y-1}
$$

as claimed.
From [7] we have the following result:
Lemma 2. Let t be any integer.
(i) For odd k,

$$
\begin{aligned}
(-1)^{t} \alpha^{k(1-2 t)}-\alpha^{k} & =(-1)^{t} U_{k t} \beta^{k(t-1)} \sqrt{\Delta} \\
(-1)^{t} \beta^{k(1-2 t)}-\beta^{k} & =(-1)^{t+1} U_{k t} \alpha^{k(t-1)} \sqrt{\Delta}
\end{aligned}
$$

(ii) For even k,

$$
\alpha^{k(1-2 t)}-\alpha^{k}=-U_{k t} \beta^{k(t-1)} \sqrt{\Delta}, \beta^{k(1-2 t)}-\beta^{k}=U_{k t} \alpha^{k(t-1)} \sqrt{\Delta}
$$

Now we shall give our first result:
Theorem 1. Let t and r be odd integers.
a)For nonnegative even k,

$$
\sum_{0 \leq i, j \leq k}\binom{i}{j} U_{r i+2 t j}=\frac{\Delta^{\frac{k}{2}} U_{t}^{k+1}\left[V_{(t+r)(k+1)}+\Delta U_{t} U_{k(t+r)}\right]-U_{t} V_{t+r}}{\Delta U_{t}^{2}+\Delta U_{t} U_{t+r}-1}
$$

and

$$
\begin{aligned}
\sum_{0 \leq i, j \leq k}\binom{i}{j} & V_{r i+2 t j} \\
& =\frac{\Delta^{\frac{k}{2}+1} U_{t}^{k+1}\left[U_{t} V_{k(t+r)}+U_{(t+r)(k+1)}\right]+\Delta U_{t} U_{t+r}-2}{\Delta U_{t}^{2}+\Delta U_{t} U_{t}-1}
\end{aligned}
$$

b)For positive odd k,

$$
\sum_{0 \leq i, j \leq k}\binom{i}{j} U_{r i+2 t j}=\frac{\Delta^{\frac{k+1}{2}} U_{t}^{k+1}\left[U_{t} V_{k(t+r)}+U_{(t+r)(k+1)}\right]-U_{t} V_{t+r}}{\Delta U_{t}^{2}+\Delta U_{t} U_{t+r}-1}
$$

and

$$
\begin{aligned}
\sum_{0 \leq i, j \leq k}\binom{i}{j} & V_{r i+2 t j} \\
& =\frac{\Delta^{\frac{k+1}{2}} U_{t}^{k+1}\left[\Delta U_{t} U_{k(t+r)}+V_{(t+r)(k+1)}\right]+\Delta U_{t} U_{t+r}-2}{\Delta U_{t}^{2}+\Delta U_{t} U_{t+r}-1} .
\end{aligned}
$$

Proof. We only prove the first identity. The others could be similarly proven. By the Binet formula, we write that for odd r,

$$
\sum_{0 \leq i, j \leq k}\binom{i}{j} U_{r i+2 t j}=\frac{1}{\alpha-\beta} \sum_{0 \leq i, j \leq k}\binom{i}{j}\left(\alpha^{r i+2 t j}-\beta^{r i+2 t j}\right)
$$

$$
=\frac{1}{\alpha-\beta}\left[\sum_{0 \leq i, j \leq k}\binom{i}{j} \alpha^{r i+2 t j}-\sum_{0 \leq i, j \leq k}\binom{i}{j} \beta^{r i+2 t j}\right],
$$

which, by Lemma 1, equals

$$
\frac{1}{\alpha-\beta}\left[\frac{\left(\alpha^{r}+\alpha^{r+2 t}\right)^{k+1}-1}{\alpha^{r}+\alpha^{r+2 t}-1}-\frac{\left(\beta^{r}+\beta^{r+2 t}\right)^{k+1}-1}{\beta^{r}+\beta^{r+2 t}-1}\right] .
$$

Also, by Lemma 2 (i), if k and t are odd, then we write

$$
\begin{aligned}
& -\alpha^{k(1-2 t)}-\alpha^{k}=-U_{k t} \beta^{k(t-1)} \sqrt{\Delta} \\
& -\beta^{k(1-2 t)}-\beta^{k}=U_{k t} \alpha^{k(t-1)} \sqrt{\Delta}
\end{aligned}
$$

Hence write

$$
\alpha^{k(1-2 t)}+\alpha^{k}=\alpha^{k-2 k t}+\alpha^{k}=U_{k t} \beta^{k(t-1)} \sqrt{\Delta} .
$$

Thus

$$
\alpha^{k+s}+\alpha^{k}=U_{-\frac{s}{2}} \beta^{-\frac{s}{2}-k} \sqrt{\Delta}=U_{\frac{s}{2}} \beta^{-\frac{s}{2}-k} \sqrt{\Delta}
$$

where $s=-2 k t$. Therefore, by taking $k=r$ and $s=t$, we write

$$
\alpha^{r}+\alpha^{r+t}=U_{\frac{t}{2}} \beta^{-\frac{t}{2}-r} \sqrt{\Delta}
$$

for odd r and $t=-2 k t=2 t$. Namely,

$$
\alpha^{r}+\alpha^{r+2 t}=U_{t} \beta^{-t-r} \sqrt{\Delta},
$$

and similarly,

$$
\beta^{r}+\beta^{r+2 t}=-U_{t} \alpha^{-t-r} \sqrt{\Delta}
$$

Hence,

$$
\begin{aligned}
& \frac{1}{\alpha-\beta}\left[\frac{\left(\alpha^{r}+\alpha^{r+2 t}\right)^{k+1}-1}{\alpha^{r}+\alpha^{r+2 t}-1}-\frac{\left(\beta^{r}+\beta^{r+2 t}\right)^{k+1}-1}{\beta^{r}+\beta^{r+2 t}-1}\right] \\
& =\frac{1}{\sqrt{\Delta}}\left[\frac{\left(U_{t} \beta^{-t-r} \sqrt{\triangle}\right)^{k+1}-1}{U_{t} \beta^{-t-r} \sqrt{\triangle}-1}-\frac{\left(-U_{t} \alpha^{-t-r} \sqrt{\triangle}\right)^{k+1}-1}{-U_{t} \alpha^{-t-r} \sqrt{\triangle}-1}\right] \\
& =\frac{1}{\sqrt{\Delta}}\left[\frac{U_{t}^{k+1} \beta^{(-t-r)(k+1)} \Delta^{\frac{k+1}{2}}-1}{U_{t} \beta^{-t-r} \sqrt{\triangle}-1}-\frac{-U_{t}^{k+1} \alpha^{(-t-r)(k+1)} \Delta^{\frac{k+1}{2}}-1}{-U_{t} \alpha^{-t-r} \sqrt{\triangle}-1}\right] \\
& =\frac{1}{\sqrt{\Delta}}\left[\frac{U_{t}^{k+1} \beta^{(-t-r)(k+1)} \Delta^{\frac{k+1}{2}}-1}{U_{t} \beta^{-t-r} \sqrt{\triangle}-1}-\frac{U_{t}^{k+1} \alpha^{(-t-r)(k+1)} \Delta^{\frac{k+1}{2}}+1}{U_{t} \alpha^{-t-r} \sqrt{\triangle}+1}\right]
\end{aligned}
$$

which equals

$$
\begin{aligned}
& \frac{1}{\sqrt{\Delta}\left(U_{t} \beta^{-t-r} \sqrt{\triangle}-1\right)\left(U_{t} \alpha^{-t-r} \sqrt{\triangle}+1\right)} \\
& \times\left[\left(U_{t}^{k+1} \beta^{(-t-r)(k+1)} \Delta^{\frac{k+1}{2}}-1\right)\left(U_{t} \alpha^{-t-r} \sqrt{\triangle}+1\right)\right.
\end{aligned}
$$

$$
\left.-\left(U_{t}^{k+1} \alpha^{(-t-r)(k+1)} \Delta^{\frac{k+1}{2}}+1\right)\left(U_{t} \beta^{-t-r} \sqrt{\triangle}-1\right)\right]
$$

By recalling $\alpha \beta=-1$ and after some rearrangement, consider the statement in the numerator of the last equation

$$
\begin{aligned}
& \left(U_{t}^{k+1} \beta^{(-t-r)(k+1)} \Delta^{\frac{k+1}{2}}-1\right)\left(U_{t} \alpha^{-t-r} \sqrt{\triangle}+1\right) \\
& -\left(U_{t}^{k+1} \alpha^{(-t-r)(k+1)} \Delta^{\frac{k+1}{2}}+1\right)\left(U_{t} \beta^{-t-r} \sqrt{\triangle}-1\right) \\
& =U_{t}^{k+2} \beta^{(-t-r) k} \Delta^{\frac{k}{2}+1}+U_{t}^{k+1} \beta^{(-t-r)(k+1)} \Delta^{\frac{k+1}{2}}-U_{t} \alpha^{-t-r} \sqrt{\triangle}-1 \\
& -U_{t}^{k+2} \alpha^{(-t-r) k} \Delta^{\frac{k}{2}+1}+U_{t}^{k+1} \alpha^{(-t-r)(k+1)} \Delta^{\frac{k+1}{2}}-U_{t} \beta^{-t-r} \sqrt{\triangle}+1 \\
& =U_{t}^{k+2} U_{k(t+r)} \Delta^{\frac{k}{2}+1} \sqrt{\triangle}+U_{t}^{k+1} \Delta^{\frac{k+1}{2}} V_{(t+r)(k+1)}-U_{t} V_{t+r} \sqrt{\triangle} .
\end{aligned}
$$

And now consider the statement in the denominator of the equation

$$
\begin{aligned}
& \left(U_{t} \beta^{-t-r} \sqrt{\triangle}-1\right)\left(U_{t} \alpha^{-t-r} \sqrt{\triangle}+1\right) \\
& =U_{t}^{2} \Delta+U_{t} \beta^{-t-r} \sqrt{\triangle}-U_{t} \alpha^{-t-r} \sqrt{\triangle}-1 \\
& =U_{t}^{2} \Delta+U_{t} \sqrt{\triangle}\left(\beta^{-t-r}-\alpha^{-t-r}\right)-1 \\
& =U_{t}^{2} \Delta+U_{t} \Delta U_{t+r}-1
\end{aligned}
$$

Thus we write

$$
\sum_{0 \leq i, j \leq k}\binom{i}{j} U_{r i+2 t j}=\frac{\Delta^{\frac{k}{2}+1} U_{t}^{k+2} U_{k(t+r)}+\Delta^{\frac{k}{2}} U_{t}^{k+1} V_{(t+r)(k+1)}-U_{t} V_{t+r}}{\Delta U_{t}^{2}+\Delta U_{t} U_{t+r}-1}
$$

as claimed.
From [7], we have the following result:
Lemma 3. Let t be any integer.
(i) For odd k,

$$
\begin{aligned}
& (-1)^{t} \alpha^{-k(2 t+1)}-\alpha^{k}=(-1)^{t+1} V_{k(t+1)} \beta^{k t}, \\
& (-1)^{t} \beta^{-k(2 t+1)}-\beta^{k}=(-1)^{t+1} V_{k(t+1)} \alpha^{k t}
\end{aligned}
$$

(ii) For even k,

$$
\alpha^{-k(2 t+1)}-\alpha^{k}=-\sqrt{\Delta} U_{k(t+1)} \beta^{k t}, \beta^{-k(2 t+1)}-\beta^{k}=\sqrt{\Delta} U_{k(t+1)} \alpha^{k t} .
$$

We have the following result without proof that could be proven by Lemmas 1 and 3 .

Theorem 2. For any integer t and odd r,

$$
\sum_{0 \leq i, j \leq k}\binom{i}{j} U_{r i+4 t j}=\frac{V_{2 t} U_{2 t+r}-V_{2 t}^{k+1}\left[V_{2 t} U_{k(2 t+r)}+U_{(2 t+r)(k+1)}\right]}{1-V_{2 t}^{2}-V_{2 t} V_{2 t+r}},
$$

$$
\sum_{0 \leq i, j \leq k}\binom{i}{j} V_{r i+4 t j}=\frac{2-V_{2 t}^{k+1}\left[V_{2 t} V_{k(2 t+r)}+V_{(2 t+r)(k+1)}\right]-V_{2 t} V_{2 t+r}}{1-V_{2 t}^{2}-V_{2 t} V_{2 t+r}}
$$

3. Alternating Binomial Sums For The Generalized Fibonacci And Lucas Numbers

In this section, we present certain alternating binomial double sums including the generalized Fibonacci and Lucas numbers. First we give a consequence of Lemma 1 by taking $-x$ instead of x : For any real numbers x and y such that $x(1+y) \neq-1$

$$
\begin{equation*}
\sum_{0 \leq i, j \leq k}\binom{i}{j}(-1)^{i} x^{i} y^{j}=\frac{(-1)^{k}(x+x y)^{k+1}+1}{x+x y+1} \tag{3.1}
\end{equation*}
$$

Theorem 3. Let t and r be odd integers.
a)For nonnegative even k,

$$
\sum_{0 \leq i, j \leq k}\binom{i}{j}(-1)^{i} U_{r i+2 t j}=\frac{\Delta^{\frac{k}{2}} U_{t}^{k+1}\left[\Delta U_{t} U_{k(t+r)}-V_{(t+r)(k+1)}\right]+U_{t} V_{t+r}}{\Delta U_{t}^{2}-\Delta U_{t} U_{t+r}-1}
$$

and

$$
\begin{aligned}
& \sum_{0 \leq i, j \leq k}\binom{i}{j}(-1)^{i} V_{r i+2 t j} \\
&=\frac{\Delta^{\frac{k+2}{2}} U_{t}^{k+1}\left[U_{t} V_{k(t+r)}-U_{(t+r)(k+1)}\right]-\Delta U_{t} U_{t+r}-2}{\Delta U_{t}^{2}-\Delta U_{t} U_{t+r}-1}
\end{aligned}
$$

b)For positive odd k,

$$
\sum_{0 \leq i, j \leq k}\binom{i}{j}(-1)^{i} U_{r i+2 t j}=\frac{\Delta^{\frac{k+1}{2}} U_{t}^{k+1}\left[U_{t} V_{k(t+r)}-U_{(t+r)(k+1)}\right]+U_{t} U_{t+r}}{-\Delta U_{t}^{2}+\Delta U_{t} U_{t+r}+1}
$$

and

$$
\begin{aligned}
& \sum_{0 \leq i, j \leq k}\binom{i}{j}(-1)^{i} V_{r i+2 t j} \\
&=\frac{\Delta^{\frac{k+1}{2}} U_{t}^{k+1}\left[\Delta U_{t} U_{k(t+r)}-V_{(t+r)(k+1)}\right]+\Delta U_{t} U_{t+r}+2}{-\Delta U_{t}^{2}+\Delta U_{t} U_{t+r}+1}
\end{aligned}
$$

Proof. We only prove the first identity. The others could be similarly proven. Assume that r is an odd integer. Thus we write

$$
\sum_{0 \leq i, j \leq k}\binom{i}{j}(-1)^{i} U_{r i+2 t j}=\frac{1}{\alpha-\beta} \sum_{0 \leq i, j \leq k}\binom{i}{j}(-1)^{i}\left(\alpha^{r i+2 t j}-\beta^{r i+2 t j}\right)
$$

$$
=\frac{1}{\alpha-\beta}\left[\sum_{0 \leq i, j \leq k}\binom{i}{j}(-1)^{i} \alpha^{r i+2 t j}-\sum_{0 \leq i, j \leq k}\binom{i}{j}(-1)^{i} \beta^{r i+2 t j}\right],
$$

which, by (3.1), equals

$$
\begin{aligned}
& \frac{1}{\alpha-\beta}\left[\frac{(-1)^{k}\left(\alpha^{r}+\alpha^{r+2 t}\right)^{k+1}+1}{\alpha^{r}+\alpha^{r+2 t}+1}-\frac{(-1)^{k}\left(\beta^{r}+\beta^{r+2 t}\right)^{k+1}+1}{\beta^{r}+\beta^{r+2 t}+1}\right] \\
& =\frac{1}{\alpha-\beta}\left[\frac{\left(U_{t} \beta^{-t-r} \sqrt{\triangle}\right)^{k+1}+1}{U_{t} \beta^{-t-r} \sqrt{\triangle}+1}-\frac{\left(-U_{t} \alpha^{-t-r} \sqrt{\triangle}\right)^{k+1}+1}{-U_{t} \alpha^{-t-r} \sqrt{\triangle}+1}\right]
\end{aligned}
$$

which equals

$$
\begin{aligned}
& \frac{1}{\sqrt{\triangle}\left(U_{t} \beta^{-t-r} \sqrt{\triangle}+1\right)\left(-U_{t} \alpha^{-t-r} \sqrt{\triangle}+1\right)} \\
& \times\left[\left(U_{t}^{k+1} \beta^{(-t-r)(k+1)} \Delta^{\frac{k+1}{2}}+1\right)\left(-U_{t} \alpha^{-t-r} \sqrt{\triangle}+1\right)\right. \\
& \left.-\left(-U_{t}^{k+1} \alpha^{(-t-r)(k+1)} \Delta^{\frac{k+1}{2}}+1\right)\left(U_{t} \beta^{-t-r} \sqrt{\triangle}+1\right)\right] .
\end{aligned}
$$

By $\alpha \beta=-1$ and some rearrangement, we write

$$
\begin{aligned}
& \left(U_{t}^{k+1} \beta^{(-t-r)(k+1)} \Delta^{\frac{k+1}{2}}+1\right)\left(-U_{t} \alpha^{-t-r} \sqrt{\triangle}+1\right) \\
& -\left(-U_{t}^{k+1} \alpha^{(-t-r)(k+1)} \Delta^{\frac{k+1}{2}}+1\right)\left(U_{t} \beta^{-t-r} \sqrt{\triangle}+1\right) \\
& =-U_{t}^{k+2} U_{k(t+r)} \Delta^{\frac{k+2}{2}} \sqrt{\triangle}+U_{t}^{k+1} \Delta^{\frac{k+1}{2}} V_{(t+r)(k+1)}-U_{t} V_{t+r} \sqrt{\triangle}
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(U_{t} \beta^{-t-r} \sqrt{\triangle}+1\right)\left(-U_{t} \alpha^{-t-r} \sqrt{\triangle}+1\right) \\
& =-U_{t}^{2} \Delta+U_{t} \sqrt{\triangle}\left(\beta^{-t-r}-\alpha^{-t-r}\right)+1 \\
& =-U_{t}^{2} \Delta+U_{t} U_{t+r} \Delta+1
\end{aligned}
$$

Finally we write

$$
\begin{aligned}
& \sum_{0 \leq i, j \leq k}\binom{i}{j}(-1)^{i} U_{r i+2 t j} \\
&=\frac{\Delta^{\frac{k+2}{2}} U_{t}^{k+2} U_{k(t+r)}-\Delta^{\frac{k}{2}} U_{t}^{k+1} V_{(t+r)(k+1)}+U_{t} V_{t+r}}{\Delta U_{t}^{2}-\Delta U_{t} U_{t+r}-1}
\end{aligned}
$$

as claimed.
We have the following result without proof that could be proven by Eq. (3.1) and Lemma 3.

Theorem 4. For $k>0$, any integer t and odd r

$$
\begin{aligned}
& \sum_{0 \leq i, j \leq k}\binom{i}{j}(-1)^{i} U_{r i+4 t j} \\
&=\frac{(-1)^{k+1} V_{2 t}^{k+1}\left[V_{2 t} U_{k(2 t+r)}-U_{(2 t+r)(k+1)}\right]-V_{2 t} U_{2 t+r}}{1-V_{2 t}^{2}+V_{2 t} V_{2 t+r}}
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{0 \leq i, j \leq k}\binom{i}{j} & (-1)^{i} V_{r i+4 t j} \\
& =\frac{(-1)^{k+1} V_{2 t}^{k+1}\left[V_{(2 t+r)(k+1)}-V_{2 t} V_{k(2 t+r)}\right]+V_{2 t} V_{2 t+r}+2}{1-V_{2 t}^{2}+V_{2 t} V_{2 t+r}}
\end{aligned}
$$

Now we give another consequence of Lemma 1 by taking $-y$ instead of y : For any real numbers x and y such that $x(1-y) \neq 1$

$$
\begin{equation*}
\sum_{0 \leq i, j \leq k}\binom{i}{j}(-1)^{j} x^{i} y^{j}=\frac{(x-x y)^{k+1}-1}{x-x y-1} . \tag{3.2}
\end{equation*}
$$

One can similarly obtain the following results by using Eq. (3.2)
Theorem 5. For any integer t and odd r,
a) For nonnegative even k,

$$
\begin{aligned}
& \sum_{0 \leq i, j \leq k}\binom{i}{j}(-1)^{j} U_{r i+4 t j} \\
&=\frac{\Delta^{\frac{k}{2}} U_{2 t}^{k+1}\left[\Delta U_{2 t} U_{k(2 t+r)}+V_{(2 t+r)(k+1)}\right]-U_{2 t} V_{2 t+r}}{\Delta U_{2 t}^{2}+\Delta U_{2 t} U_{2 t+r}+1}
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{0 \leq i, j \leq k}\binom{i}{j} & (-1)^{j} V_{r i+4 t j} \\
& =\frac{\Delta^{\frac{k+2}{2}} U_{2 t}^{k+1}\left[U_{2 t} V_{k(2 t+r)}+U_{(2 t+r)(k+1)}\right]+\Delta U_{2 t} U_{2 t+r}+2}{\Delta U_{2 t}^{2}+\Delta U_{2 t} U_{2 t+r}+1}
\end{aligned}
$$

b) For positive odd k,

$$
\begin{aligned}
& \sum_{0 \leq i, j \leq k}\binom{i}{j}(-1)^{j} U_{r i+4 t j} \\
&=-\frac{\Delta^{\frac{k+1}{2}} U_{2 t}^{k+1}\left[U_{2 t} V_{k(2 t+r)}+U_{(2 t+r)(k+1)}\right]+U_{2 t} V_{2 t+r}}{\Delta U_{2 t}^{2}+\Delta U_{2 t} U_{2 t+r}+1}
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{0 \leq i, j \leq k} & \binom{i}{j}(-1)^{j} V_{r i+4 t j} \\
& =-\frac{\Delta^{\frac{k+1}{2}} U_{2 t}^{k+1}\left[\Delta U_{2 t} U_{k(2 t+r)}+V_{(2 t+r)(k+1)}\right]-\Delta U_{2 t} U_{2 t+r}-2}{\Delta U_{2 t}^{2}+\Delta U_{2 t} U_{2 t+r}+1}
\end{aligned}
$$

Theorem 6. For any integer t and odd r,

$$
\begin{aligned}
\sum_{0 \leq i, j \leq k}\binom{i}{j}(-1)^{j} U_{r i+2 t j} & \\
& =\frac{(-1)^{k} V_{t}^{k+1}\left[V_{t} U_{k(t+r)}+U_{(t+r)(k+1)}\right]-V_{t} U_{t+r}}{V_{t}^{2}+V_{t} V_{t+r}+1}
\end{aligned}
$$

and

$$
\begin{aligned}
& \sum_{0 \leq i, j \leq k}\binom{i}{j}(-1)^{j} V_{r i+2 t j} \\
&=\frac{(-1)^{k} V_{t}^{k+1}\left[V_{t} V_{k(t+r)}+V_{(t+r)(k+1)}\right]+V_{t} V_{t+r}+2}{V_{t}^{2}+V_{t} V_{t+r}+1}
\end{aligned}
$$

Theorem 7. For any integer t and even r,
a) For nonnegative even k,

$$
\begin{aligned}
& \sum_{0 \leq i, j \leq k}\binom{i}{j}(-1)^{j} U_{r i+4 t j} \\
&=\frac{\Delta^{\frac{k}{2}} U_{2 t}^{k+1}\left[\Delta U_{2 t} U_{k(2 t+r)}-V_{(2 t+r)(k+1)}\right]+U_{2 t} V_{2 t+r}}{\Delta U_{2 t}^{2}-\Delta U_{2 t} U_{2 t+r}-1}
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{0 \leq i, j \leq k}\binom{i}{j} & (-1)^{j} V_{r i+4 t j} \\
& =\frac{\Delta^{\frac{k+2}{2}} U_{2 t}^{k+1}\left[U_{2 t} V_{k(2 t+r)}-U_{(2 t+r)(k+1)}\right]-\Delta U_{2 t} U_{2 t+r}-2}{\Delta U_{2 t}^{2}-\Delta U_{2 t} U_{2 t+r}-1} .
\end{aligned}
$$

b) For positive odd k,

$$
\begin{aligned}
& \sum_{0 \leq i, j \leq k}\binom{i}{j}(-1)^{j} U_{r i+4 t j} \\
&=\frac{\Delta^{\frac{k+1}{2}} U_{2 t}^{k+1}\left[U_{2 t} V_{k(2 t+r)}-U_{(2 t+r)(k+1)}\right]-U_{2 t} V_{2 t+r}}{-\Delta U_{2 t}^{2}+\Delta U_{2 t} U_{2 t+r}+1}
\end{aligned}
$$

and

$$
\begin{aligned}
& \sum_{0 \leq i, j \leq k}\binom{i}{j}(-1)^{j} V_{r i+4 t j} \\
&=\frac{\Delta^{\frac{k+1}{2}} U_{2 t}^{k+1}\left[\Delta U_{2 t} U_{k(2 t+r)}+V_{(2 t+r)(k+1)}\right]-\Delta U_{2 t} U_{2 t+r}-2}{\Delta U_{2 t}^{2}-\Delta U_{2 t} U_{2 t+r}-1}
\end{aligned}
$$

We give another consequence of Lemma 1 by taking $-x$ instead of x and $-y$ instead of y : For any real numbers x and y such that $x(1-y) \neq-1$

$$
\begin{equation*}
\sum_{0 \leq i, j \leq k}\binom{i}{j}(-1)^{i+j} x^{i} y^{j}=\frac{(-1)^{k}(x-x y)^{k+1}+1}{x-x y+1} \tag{3.3}
\end{equation*}
$$

By using Eq. (3.3), similar to the previous results, we have the following results without proof.

Theorem 8. For any integer t and odd integer r,
a)For nonnegative even k,

$$
\begin{aligned}
& \sum_{0 \leq i, j \leq k}\binom{i}{j}(-1)^{i+j} U_{r i+4 t j} \\
&=\frac{\Delta^{\frac{k}{2}} U_{2 t}^{k+1}\left[\Delta U_{2 t} U_{k(2 t+r)}-V_{(2 t+r)(k+1)}\right]+U_{2 t} V_{2 t+r}}{\Delta U_{2 t}^{2}-\Delta U_{2 t} U_{2 t+r}+1}
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{0 \leq i, j \leq k}\binom{i}{j} & (-1)^{i+j} V_{r i+4 t j} \\
& =\frac{\Delta^{\frac{k+2}{2}} U_{2 t}^{k+1}\left[U_{2 t} V_{k(2 t+r)}-U_{(2 t+r)(k+1)}\right]-\Delta U_{2 t} U_{2 t+r}+2}{\Delta U_{2 t}^{2}-\Delta U_{2 t} U_{2 t+r}+1}
\end{aligned}
$$

b)For positive odd k,

$$
\begin{aligned}
& \sum_{0 \leq i, j \leq k}\binom{i}{j}(-1)^{i+j} U_{r i+4 t j} \\
&=\frac{\Delta^{\frac{k+1}{2}} U_{2 t}^{k+1}\left[U_{2 t} V_{k(2 t+r)}-U_{(2 t+r)(k+1)}\right]+U_{2 t} V_{2 t+r}}{\Delta U_{2 t}^{2}-\Delta U_{2 t} U_{2 t+r}+1}
\end{aligned}
$$

and

$$
\begin{aligned}
& \sum_{0 \leq i, j \leq k}\binom{i}{j}(-1)^{i+j} V_{r i+4 t j} \\
&=\frac{\Delta^{\frac{k+1}{2}} U_{2 t}^{k+1}\left[\Delta U_{2 t} U_{k(2 t+r)}-V_{(2 t+r)(k+1)}\right]-\Delta U_{2 t} U_{2 t+r}+2}{\Delta U_{2 t}^{2}-\Delta U_{2 t} U_{2 t+r}+1}
\end{aligned}
$$

Theorem 9. For odd integers t and r,

$$
\sum_{0 \leq i, j \leq k}\binom{i}{j}(-1)^{i+j} U_{r i+2 t j}=\frac{V_{t}^{k+1}\left[V_{t} U_{k(t+r)}-U_{(t+r)(k+1)}\right]+V_{t} U_{t+r}}{V_{t}^{2}-V_{t} V_{t+r}+1}
$$

and

$$
\sum_{0 \leq i, j \leq k}\binom{i}{j}(-1)^{i+j} V_{r i+2 t j}=\frac{V_{t}^{k+1}\left[V_{t} V_{k(t+r)}-V_{(t+r)(k+1)}\right]-V_{t} V_{t+r}+2}{V_{t}^{2}-V_{t} V_{t+r}+1}
$$

Theorem 10. For any integer t and even r,
a)For nonnegative even k,

$$
\begin{aligned}
& \sum_{0 \leq i, j \leq k}\binom{i}{j}(-1)^{i+j} U_{r i+4 t j} \\
&=\frac{\Delta^{\frac{k}{2}} U_{2 t}^{k+1}\left[\Delta U_{2 t} U_{k(2 t+r)}+V_{(2 t+r)(k+1)}\right]-U_{2 t} V_{2 t+r}}{\Delta U_{2 t}^{2}+\Delta U_{2 t} U_{2 t+r}-1}
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{0 \leq i, j \leq k}\binom{i}{j} & (-1)^{i+j} V_{r i+4 t j} \\
& =\frac{\Delta^{\frac{k+2}{2}} U_{2 t}^{k+1}\left[U_{2 t} V_{k(2 t+r)}+U_{(2 t+r)(k+1)}\right]+\Delta U_{2 t} U_{2 t+r}-2}{\Delta U_{2 t}^{2}+\Delta U_{2 t} U_{2 t+r}-1}
\end{aligned}
$$

b)For positive odd k,

$$
\begin{aligned}
& \sum_{0 \leq i, j \leq k}\binom{i}{j}(-1)^{i+j} U_{r i+4 t j} \\
&=\frac{\Delta^{\frac{k+1}{2}} U_{2 t}^{k+1}\left[U_{2 t} V_{k(2 t+r)}+U_{(2 t+r)(k+1)}\right]-U_{2 t} V_{2 t+r}}{\Delta U_{2 t}^{2}+\Delta U_{2 t} U_{2 t+r}-1}
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{0 \leq i, j \leq k} & \binom{i}{j}(-1)^{i+j} V_{r i+4 t j} \\
& =\frac{\Delta^{\frac{k+1}{2}} U_{2 t}^{k+1}\left[\Delta U_{2 t} U_{k(2 t+r)}+V_{(2 t+r)(k+1)}\right]+\Delta U_{2 t} U_{2 t+r}-2}{\Delta U_{2 t}^{2}+\Delta U_{2 t} U_{2 t+r}-1}
\end{aligned}
$$

References

[1] L. Carlitz, Some classes of Fibonacci sums, Fibonacci Quart., 16 (1978), 411-426.
[2] R. A. Dunlap, The Golden Ratio and Fibonacci Numbers, World Scientific Publishing Co. River Edge, NJ, 1997.
[3] R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Massachusetts: Addison-Wesley, 1994.
[4] A. F. Horadam, Basic properties of a certain generalized sequence of numbers, Fibonacci Quart. 3 (3) (1965), 161-176.
[5] A. F. Horadam, Generating functions for powers of a certain generalized sequence of numbers, Duke Math. J. 32 (1965), 437-446.
[6] M. A. Khan and H. Kwong, Some binomial identities associated with the generalized natural number sequence, Fibonacci Quart. 49(1) (2011), 57-65.
[7] E. Kıliç, Some classes of alternating weighted binomial sums, An. Ştiint. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 3(2) (2016), 835-843.
[8] E. Kılıç, İ. Akkuş, N. Ömür and Y. T. Ulutaş, Formulas for binomial sums including powers of Fibonacci and Lucas numbers, UPB Scientific Bulletin, Series A 77(4) (2015), 69-78.
[9] E. Kılıç and T. Arıkan, Double binomial sums and double sums related with certain linear recurrences of various order, Chiang Mai J. Sci., in press.
[10] E. Kılıç and H. Belbachir, Generalized double binomial sums families by generating functions, Util. Math. 104 (2017), 161-174.
[11] E. Kılıç and E. J. Ionascu, Certain binomial sums with recursive coefficients, Fibonacci Quart. 48 (2) (2010), 161-167.
[12] E. Kıliç and N. Irmak, Binomial identities involving the generalized Fibonacci type polynomials, Ars Combin. 98 (2011), 129-134.
[13] E. Kılıç, N. Ömür and Y. T. Ulutaş, Binomial sums whose coefficients are products of terms of binary sequences, Util. Math. 84 (2011), 45-52.
[14] J. W. Layman, Certain general binomial-Fibonacci sums, Fibonacci Quart. 15(3) (1977), 362-366
[15] T. Mansour, A formula for the generating functions of powers of Horadam's sequence, Australas. J. Combin. 30 (2004), 207-212.
[16] S. Vajda, Fibonacci \& Lucas numbers, and the golden section: John Wiley \& Sons, Inc., New York, 1989.

TOBB Economics and Technology University, Mathematics Department, 06560

Ankara, Turkey

E-mail address: ekilic@etu.edu.tr
Bozok University, Department of Mathematics, Yozgat, Turkey
E-mail address: funda.tasdemir@bozok.edu.tr

[^0]: 2000 Mathematics Subject Classification. 11B39, 05A10.
 Key words and phrases. Fibonacci numbers, Lucas numbers, binomial sums.

