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Abstract. In this paper, we will give closed formulæ for weighted

and alternating weighted binomial sums with the generalized Fi-
bonacci and Lucas numbers including both falling factorials and pow-

ers of indices. Furthermore we will derive closed formulæ for weighted

binomial sums including odd powers of the generalized Fibonacci and
Lucas numbers.

1. Introduction

For n > 1, define the generalized Fibonacci and Lucas sequences {Un}
and {Vn} by

Un = pUn−1 − Un−2 and Vn = pVn−1 − Vn−2,

with U0 = 0, U1 = 1, and V0 = 2, V1 = p, respectively. The Binet formulæ
are

Un =
αn − βn

α− β
and Vn = αn + βn,

where α, β =
(
p±

√
p2 − 4

)
/2.

From [2], recall that for k ≥ 0 and n > 1,

Ukn = VkUk(n−1) − Uk(n−2) and Vkn = VkVk(n−1) − Vk(n−2).

As generalizations of the results of [9], Prodinger [8] derived a general
formula for the sum

n∑
i=1

F 2m+ε
2i+δ ,

where ε, δ ∈ {0, 1} , as well as for the corresponding sums for Lucas num-
bers.
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After this Kılıç et. al [4] derived general formulæ for the alternating
sums

n∑
i=1

(−1)
i
F 2m+ε

2i+δ and

n∑
i=1

(−1)
i
L2m+ε

2i+δ .

Khan and Kwong [7] studied the sums
n∑
i=0

(
n

i

)
imUi and

n∑
i=0

(
n

i

)
(−1)

i
imUi.

In [5], the authors computed alternating binomial sums
n∑
i=0

(
n

i

)
(−1)

i
f(n, i, k, t) and

n∑
i=0

(
n

i

)
g(n, i, k, t),

where f(n, i, k, t) and g (n, i, k, t) are certain products of generalized Fi-
bonacci and Lucas numbers.

Kılıç et. al [3] computed the sums
n∑
i=0

(
n

i

)
isU2s+ε

ki ,

n∑
i=0

(
n

i

)
isV 2s+ε

ki ,

as well as their alternating analogues for positive integers k and s where ε
is defined as before.

By inspiring from [3, 5], the authors [6] derived formulæ for the binomial
sums

n∑
i=0

(
n

i

)
im (−1)

i
f(n, i, k, t),

where f(n, i, k, t) is defined as before and m is a nonnegative integer and xm

stands for the falling factorial defined by xm = x (x− 1) . . . (x−m+ 1) .
In this paper, we compute the weighted binomial sums

n∑
i=0

(
n

i

)
is+mg(i, k) and

n∑
i=0

(
n

i

)
(−1)

i
is+mg(i, k),

where g(i, k) is either U2s+1
ki or V 2s+1

ki for k,m > 0.

2. The Main results

Before our main results, we give some auxiliary results. For n ≥ 2, define
the sequences {Xkn} , {Ykn} , {Wkn} and {Zkn} as

X0 = 0, Xk = Uk, Xkn = (Vk + 2)
(
Xk(n−1) −Xk(n−2)

)
,

Y0 = 0, Yk = Uk, Ykn = (Vk − 2)
(
Yk(n−1) + Yk(n−2)

)
,

W0 = 2, Wk = Vk + 2, Wkn = (Vk + 2)
(
Wk(n−1) −Wk(n−2)

)
,

Z0 = 2, Zk = Vk − 2, Zkn = (Vk − 2)
(
Zk(n−1) + Zk(n−2)

)
.
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The Binet formulæ are

Xkn =

(
1 + αk

)n − (1 + βk
)n

α− β
, Ykn =

(
αk − 1

)n − (βk − 1
)n

α− β
,

Wkn =
(
1 + αk

)n
+
(
1 + βk

)n
and Zkn =

(
αk − 1

)n
+
(
βk − 1

)n
,

where αk, βk =
(
Vk ±

√
V 2
k − 4

)
/2.

From (see Eq. (1.118) on page 36, [1]), we recall the following lemma:

Lemma 1 ([1]). For nonnegative integers n and m,
n∑
i=0

(
n

i

)
imai = amnm(1 + a)n−m [a 6= −1 and m 6= n] .

We need the following result.

Theorem 1. For nonnegative integers n and m,
n∑
i=0

(
n

i

)
imUki =

nm

(2 + Vk)
mXk(n+m),

n∑
i=0

(
n

i

)
i1+mUki =

nm

(2 + Vk)
m

(
nXk(n+m) + (m− n)Xk(n+m−1)

)
,

n∑
i=0

(
n

i

)
(−1)

i
imUki = (−1)

n+m nm

(2− Vk)
mYk(n+m),

n∑
i=0

(
n

i

)
(−1)

i
i1+mUki =

nm (−1)
n+m−1

(2− Vk)
m

(
(m− n)Yk(n+m−1) − nYk(n+m)

)
.

Proof. Consider

n∑
i=0

(
n

i

)
imUki =

1

α− β

[
n∑
i=0

(
n

i

)
imαki −

n∑
i=0

(
n

i

)
imβki

]
,

which, by Lemma 1, equals

nm

α− β

[(
1 + αk

)n
(1 + βk)

m −
(
1 + βk

)n
(1 + αk)

m

]
=

nm

(2 + Vk)
mXk(n+m),

as claimed. One can easily obtain the rest of claimed identities. �

Similar to the proof of Theorem 1, we have the following result without
proof.

Theorem 2. For nonnegative integers n and m,
n∑
i=0

(
n

i

)
imVki =

nm

(2 + Vk)
mWk(n+m),
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n∑
i=0

(
n

i

)
i1+mVki =

nm

(2 + Vk)
m

[
(m− n)Wk(n+m−1) + nWk(n+m)

]
,

n∑
i=0

(
n

i

)
(−1)

i
imVki = (−1)

n+m nm

(2− Vk)
mZk(n+m),

n∑
i=0

(
n

i

)
(−1)

i
i1+mVki =

nm (−1)
n+m−1

(2− Vk)
m

[
(m− n)Zk(n+m−1) − nZk(n+m)

]
.

In order to generalize Theorems 1 and 2, we will define two new opera-
tors. For n ≥ 1, define the operators DU and ∆U on Xk(n+m) and Yk(n+m)

as follows

DU

(
Xk(n+m)

)
= nXk(n+m) + (m− n)Xk(n+m−1), (2.1)

∆U

(
Yk(n+m)

)
= nYk(n+m) − (m− n)Yk(n+m−1). (2.2)

For example, from Theorem 1 and (2.1), we have

n∑
i=0

(
n

i

)
i2+mUki = DU

[
n∑
i=0

(
n

i

)
im+1Uki

]

= DU

[
nm

(2 + Vk)
m

(
nXk(n+m) + (m− n)Xk(n+m−1)

)]
=

nm

(2 + Vk)
m

[
n2Xk(n+m) + (m− n)(2n− 1)Xk(n+m−1)

+(m− n)(m− n+ 1)Xk(n+m−2)

]
.

From the discussion above, if
n∑
i=0

(
n
i

)
is−1+mUki is of the form nm

(2+Vk)m
∑
t≥0

atXt,

then
n∑
i=0

(
n

i

)
is+mUki =

nm

(2 + Vk)
mDU

∑
t≥0

atXt

 .
Hence the coefficients at can be computed iteratively. Iterative process is
summarized in the theorem:

Theorem 3. The polynomials as,r (m,n) satisfy the recurrence

as,r(m,n) = (n− r)as−1,r(m,n) + (m− n+ r − 1)as−1,r−1(m,n), s ≥ 1,

where the initial value a0,0 (m,n) = 1 and if r < 0 or r > s, as,r(m,n) = 0.
For any integers m, s ≥ 0,

i)

n∑
i=0

(
n

i

)
is+mUki =

nm

(2 + Vk)m

s∑
r=0

as,r(m,n)Xk(n+m−r), (2.3)
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ii)

n∑
i=0

(
n

i

)
(−1)

i
is+mUki =

nm (−1)
n+m

(2− Vk)m

s∑
r=0

(−1)
r
as,r(m,n)Yk(n+m−r).

(2.4)

Proof. i) Recall that

n∑
i=0

(
n

i

)
is+mUki = DU

(
n∑
i=0

(
n

i

)
is−1+mUki

)
.

Thus by (2.1), we have

s∑
r=0

as,r(m,n)Xk(n+m−r) = DU

[
s−1∑
r=0

as−1,r(m,n)Xk(n+m−r)

]

=

s−1∑
r=0

as−1,r(m,n)
(
(n− r)Xk(n+m−r) + (m− n+ r)Xk(n+m−r−1)

)
= nas−1,0(m,n)Xk(n+m) +

s−1∑
r=1

(n− r)as−1,r(m,n)Xk(n+m−r)

+

s−1∑
r=1

(m− n+ r − 1)as−1,r−1(m,n)Xk(n+m−r)

+ (m− n+ s− 1)as−1,s−1(m,n)Xk(n+m−s)

= nas−1,0(m,n)Xk(n+m) + (m− n+ s− 1)as−1,s−1(m,n)Xk(n+m−s)

+

s−1∑
r=1

((n− r)as−1,r(m,n) + (m− n+ r − 1)as−1,r−1(m,n))Xk(n+m−r).

Since as−1,r(m,n) = 0 if r < 0 or r > s− 1, we write

s∑
r=0

as,r(m,n)Xk(n+m−r)

=

s∑
r=0

[(n− r)as−1,r(m,n) + (m− n+ r − 1)as−1,r−1(m,n)]Xk(n+m−r).

The recurrence of as,r(m,n) follows by comparing coefficients.
ii) Observing

n∑
i=0

(
n

i

)
(−1)

i
is+mUki = ∆U

[
n∑
i=0

(
n

i

)
(−1)

i
is−1+mUki

]
,

the proof follows similar to the first claim. �
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For n ≥ 1, define the operators DU and ∆U on Wk(n+m) and Zk(n+m)

as

DV

(
Wk(n+m)

)
= nWk(n+m) + (m− n)Wk(n+m−1),

∆V

(
Zk(n+m)

)
= nZk(n+m) − (m− n)Zk(n+m−1).

Theorem 4. For m, s ≥ 0,
n∑
i=0

(
n

i

)
is+mVki =

nm

(2 + Vk)m

s∑
r=0

as,r(m,n)Wk(n+m−r), (2.5)

n∑
i=0

(
n

i

)
(−1)

i
is+mVki =

nm (−1)
n+m

(2− Vk)m

s∑
r=0

(−1)
r
as,r(m,n)Zk(n+m−r).

(2.6)

Proof. The proof is similar to the proof of Theorem 3. �

3. Additional Sums Formulæ including odd powers of the
Generalized Fibonacci and Lucas numbers

In this section, we will derive much more general case of the results of
Theorems 3 and 4 by taking odd powers of the generalized Fibonacci and
Lucas numbers. Before this, we need to recall some facts.

From [10], for reals m and n, recall that

(m+ n)
k

=

(k−1)/2∑
i=0

(
k

i

)
(mn)i(mk−2i + nk−2i) if k is odd,

and

(m− n)
k

=

(k−1)/2∑
i=0

(
k

i

)
(−1)

i
(mn)i(mk−2i − nk−2i) if k is odd. (3.1)

Now we are ready to give our first claim:

Theorem 5. For k, s > 0,

n∑
i=0

(
n

i

)
is+mU2s+1

ki =
nmU2s

k

(V 2
k − 4)s

s∑
j=0

(−1)
j

(
2s+ 1

j

)
1

(2 + Vk(2s−2j+1))m

×
s∑
r=0

as,r(m,n)Xk(2s−2j+1)(n+m−r).

Proof. For k > 0, by the Binet formula of {Un} and (3.1), we have

n∑
i=0

(
n

i

)
is+mU2s+1

ki =

n∑
i=0

(
n

i

)
is+m

(
αki − βki

α− β

)2s+1
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=
1

(α− β)
2s+1

n∑
i=0

(
n

i

)
is+m

×
s∑
j=0

(
2s+ 1

j

)
(−1)

j
(
αki(2s−2j+1) − βki(2s−2j+1)

)
=

1

(p2 − 4)
s

s∑
j=0

(
2s+ 1

j

)
(−1)

j
n∑
i=0

(
n

i

)
is+mUki(2s−2j+1),

which, by taking k(2s+ 1− 2j) replace of k in (2.3), equals

nmU2s
k

(V 2
k −4)

s

s∑
j=0

(
2s+ 1

j

)
(−1)

j(
2 + Vk(2s−2j+1)

)m s∑
r=0

as,r(m,n)Xk(2s−2j+1)(n+m−r),

as claimed. �

Theorem 6. For k, s > 0,

n∑
i=0

(
n

i

)
(−1)

i
is+mU2s+1

ki

= (−1)
n+m nmU2s

k

(V 2
k − 4)s

s∑
j=0

(−1)
j

(
2s+ 1

j

)
1

(2− Vk(2s−2j+1))m

×
s∑
r=0

(−1)
r
as,r(m,n)Yk(2s−2j+1)(n+m−r).

Proof. For k > 0, consider

n∑
i=0

(
n

i

)
(−1)

i
is+mU2s+1

ki =

n∑
i=0

(
n

i

)
(−1)

i
is+m

(
αki − βki

α− β

)2s+1

,

which, by (3.1), equals

n∑
i=0

(
n

i

)
(−1)

i
is+m

 s∑
j=0

(
2s+ 1

j

)
(−1)

j

(
αki(2s−2j+1) − βki(2s−2j+1)

(α− β)
2s+1

)
=

1

(p2 − 4)
s

s∑
j=0

(
2s+ 1

j

)
(−1)

j
n∑
i=0

(
n

i

)
(−1)

i
is+mUki(2s−2j+1).

By taking k(2s+1−2j) instead of k in (2.4), the claimed result follows. �

Using (2.5) and (2.6), and, by following the proof of Theorem 5, we have
the following result without proof.

Theorem 7. For k, s > 0,



8 EMRAH KILIÇ, NEŞE ÖMÜR, AND SIBEL KOPARAL

n∑
i=0

(
n

i

)
is+mV 2s+1

ki = nm
s∑
j=0

(
2s+ 1

j

)
1(

2 + Vk(2s−2j+1)

)m
×

s∑
r=0

as,r(m,n)Wk(2s−2j+1)(n+m−r).

Theorem 8. For k, s > 0,

n∑
i=0

(
n

i

)
(−1)

i
is+mV 2s+1

ki = (−1)
n+m

nm

×
s∑
j=0

(
2s+ 1

j

)
1(

2− Vk(2s−2j+1)

)m s∑
r=0

(−1)
r
as,r(m,n)Zk(2s−2j+1)(n+m−r).
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