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Abstract. Two new asymmetric generalizations of the Filbert and Lilbert matrices constructed by the

products of two Fibonacci and Lucas numbers are considered, with additional parameters settings. Explicit

formulæ are derived for the LU-decompositions and their inverses.

1. Introduction

Let {Un} and {Vn} be generalized Fibonacci and Lucas sequences, respectively, whose the Binet forms
are

Un =
αn − βn

α− β
= αn−1

1− qn

1− q
and Vn = αn + βn = αn (1 + qn)

with q = β/α = −α−2, so that α = i/
√
q.

When α = 1+
√
5

2 (or equivalently q = (1−
√

5 )/(1 +
√

5 ) ), the sequence {Un} is reduced to the Fibonacci
sequence {Fn} and the sequence {Vn} is reduced to the Lucas sequence {Ln} .

Throughout this paper we shall use the q-Pochhammer symbol (x; q)n = (1− x)(1− xq) · · · (1− xqn−1).
In the current literature, there are many interesting and useful combinatorial matrices constructed via

the binomial coefficients, the Gaussian q-binomial coefficients or the well-known integer sequences such as
natural numbers, the Fibonacci and Lucas numbers, etc. These matrices are chosen as Hankel matrix,
Toeplitz matrix, tridiagonal matrix or any other special matrices. For these combinatorial matrices and
their properties, we refer to the works (see [1-24]).

Now we recall some well-known combinatorial matrices from the current literature:

• Chu and Di Claudio [4] studied the matrix
[
(a)j+λi
(c)j+λi

]
0≤i,j≤n

, where a, c and {λi}ni=0 are complex

numbers, and (x)n is shifted factorial of order n by

(x)0 = 1 and (x)n = x (x+ 1) . . . (x+ n− 1) for n = 1, 2, . . . .

They also presented some variants of above matrix.
• For nonnegative integer g, Zhou and Zhaolin [23] studied the g-circulant matrices whose elements

consist of the Fibonacci and the Lucas numbers, separately.
• Hilbert matrix H = [hij ] is defined with entries

hij =
1

i+ j − 1
.

• As an analogue of the Hilbert matrix, Richardson [22] defined the Filbert matrix F = [fij ] with
entries

fij =
1

Fi+j−1
.

• In [8], Kılıç and Prodinger studied the generalized Filbert matrix F with entries 1
Fi+j+r

, where r ≥ −1

is an integer parameter.
• After this, Prodinger [20] defined a new generalization of the generalized Filbert matrix by intro-

ducing 3 additional parameters by taking its entries as xiyj

Fλ(i+j)+r
.
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• Kılıç and Prodinger [9] gave a further generalization of the generalized Filbert matrix F by defining
the matrix Q with entries hij as follows

hij =
1

Fi+j+rFi+j+r+1 . . . Fi+j+r+k−1
,

where r ≥ −1 and k ≥ 1 are integer parameters.
• Recently, Kılıç and Prodinger introduced two new variations of the Filbert matrix F, and define the

matrices G and L with entries gij and tij by

gij =
Fλ(i+j)+r

Fλ(i+j)+s
and tij =

Lλ(i+j)+r

Lλ(i+j)+s
,

where s, r and λ are integer parameters such that s 6= r, and s ≥ −1 and λ ≥ 1. This was the first
nontrivial instance where the numerator of the entries is not equal to zero.

• Recently, Kılıç and Arıkan [18] define the matrices M and T as nonlinear generalizations of Filbert
and Lilbert (Lucas-Hilbert) matrices with indices in geometric progression with entries

Mij =
1

Uλ(i+r)k+µ(j+s)m+c

and Tij =
1

Vλ(i+r)k+µ(j+s)m+c

,

where Un and Vn are nth generalized Fibonacci and Lucas numbers, resp. When k = m = 1, their
results cover all Filbert-like matrices outside the matrices whose entries are consist of the products
of the Fibonacci or Lucas numbers.

• Much recently, Kılıç and Prodinger [11] go one step further, by allowing an asymmetric growth of
indices. They, however, confine theirselves to k = 1; for this instance, the inverse matrix also enjoys
nice closed form entries, which is no longer true for k ≥ 2. To be more specific, they introduce four
generalizations of the Filbert matrix F, and define the matrices T, M, H and B with entries by

tij =
1

Fλi+µj+r
, mij =

Fλi+µj+r
Fλi+µj+s

, hij =
1

Lλi+µj+r
and bij =

Lλi+µj+r
Lλi+µj+s

,

respectively, where s, r, λ and µ are integer parameters such that s 6= r, and s ≥ −1 and λ, µ ≥ 1.
The authors prove to their results, they couldn’t use the q-Zeilberger algorithm because the summand
they need are not q-hypergometric. So they use the backward induction to prove their claims.

In the works summarized above, the authors derived explicit formulæ for the LU-decomposition, their
inverses, and the Cholesky factorization. Of course, because of these asymmetric entries, one cannot get a
Cholesky decomposition anymore.

As mentioned above, there are various kinds of generalizations of the Filbert or Lilbert matrices. Some of
them are based on increasing the number of Fibonacci or Lucas terms multiplied, see [9, 12]. On the other
hand, an another kind generalization is to degenerate the symmetry in indices, see [11].

In this paper, we combine the generalization ideas of the works [9, 11, 12] and then continue to obtain
”nice” generalizations of the Filbert and Lilbert matrices and then now we will introduce two generalizations
of the Filbert matrix F, and define the matrices W and Z by taking into products of the Fibonacci and Lucas
numbers in the denominator as well as again allowing an asymmetric growth of indices with entries by for
any positive integers i and j,

wij =
1

Fλi+µj+rLλi−µj+s
where r,s, λ and µ are integers such that λi+ µj + r 6= 0, and,

zij =
1

Lλi+µj+rLλi−µj+s

for any integers r,s, λ and µ, respectively.
Thus we rewrite the entries of the matrices W and Z in the q-form :

wij = (−1)
λi
i−r−s+1qλi+

r+s−1
2

(1− q)
(1− qλi+µj+r) (1 + qλi−µj+s)

,

zij = (−1)
λi
i−r−sqλi+

r+s
2

1

(1 + qλi+µj+r) (1 + qλi−µj+s)
,
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respectively.
We will derive explicit formulæ for the LU-decompositions of matrices W and Z, and their inverse. Simi-

larly to the results of [8-18,20-21], the sizes of the matrices do not really matter, and they can be thought as
infinite matrices and we may restrict it whenever necessary to the first N rows resp. columns and write WN

and ZN . All the identities we will obtain hold for general q, and results about Fibonacci and Lucas numbers
come out as corollaries for the special choice of q.

Firstly, we will present all the results related to the matrices. Then we will indicate some proofs related
to the matrices.

As an illustration, we write out the Fibonacci-Lucas cases for some λ, µ ∈ {2, 1} and r = 3, s = 1.
The important part is to find the explicit forms. This was done by experiments with a computer algebra

system and spotting patterns. This becomes increasingly complicated when more and more new parameters
are introduced, as the guessing only works for fixed choices of the parameters, and one needs to vary them
as well.

Once one knows how the entries look like, proofs are by reducing sums to single terms. For this, the
q-Zeilberger algorithm is a handy tool. However for the matrices W and Z, the present versions of the q-
Zeilberger algorithm do not work, and we have to simulate it by noticing that the relevant sums are Gosper-
summable. To do this, some more guessing (with an additional parameter) is required. Consequently, since
all these proofs are routine and somewhat tedious, we only present two typical examples.

2. The Matrix W

In this section, we will obtain the LU -decomposition W = L.U :

Theorem 1. For 1 ≤ d ≤ n, we have

Ln,d = (−q)λ(n−d)
(
qλ; qλ

)
n−1

(
qλd+µ+r; qµ

)
d

(
−qλd−µ+s; q−µ

)
d

(
−qλ(n+d−1)+r+s; q−λ

)
n−d

(qλ; qλ)n−d (qλ; qλ)d−1 (qλn+µ+r; qµ)d (−qλn−µ+s; q−µ)d (−qλn+r+s; q−λ)n−d
.

Fibonacci Corollary for λ = 2, r = 3 and µ = s = 1 :

Corollary 1. For 1 ≤ d ≤ n, we have

Ln,d =

(
n−1∏
t=1

F2t

)(
d∏
t=1

Ft+2d+3

)(
d∏
t=1

L−t+2d+1

)(
n−d∏
t=1

L2(n+d−t+2)

)
(
n−d∏
t=1

F2t

)(
d−1∏
t=1

F2t

)(
d∏
t=1

F2n+t+3

)(
d∏
t=1

L2n−t+1

)(
n−d∏
t=1

L2(n−t+3)

) .
Theorem 2. For 1 ≤ d ≤ n, we have

Ud,n = i−2λd−r−s+1q(
d+1
2 )λ+n(1−d)µ+ds+ r−s−1

2 (1− q)

×
(
qλ; qλ

)
d−1 (qµ; qµ)n−1

(
−qµ(n+1)+r−s; qµ

)
d−1

(
−qλ(d+1)+r+s; qλ

)
d−1

(qµ; qµ)n−d (qµn+λ+r; qλ)d (−q−µn+λ+s; qλ)d (−qλd−µ+s; q−µ)d−1 (qλd+µ+r; qµ)d−1
.

Fibonacci Corollary for λ = 2, r = 3 and µ = s = 1 :

Corollary 2. For 1 ≤ d ≤ n, we have

Ud,n = (−1)
n−dn+d2−1

(
d−1∏
t=1

F2t

)(
n−1∏
t=1

Ft

)(
d−1∏
t=1

Ln+t+2

)(
d−1∏
t=1

L2(d+t+2)

)
(
n−d∏
t=1

Ft

)(
d∏
t=1

Fn+2t+3

)(
d−1∏
t=1

F2d+t+3

)(
d∏
t=1

L−n+2t+1

)(
d−1∏
t=1

L2d−t+1

) .
Theorem 3. For N ≥ 1, we have

detWN = i(−r−s+1)Nq(
r−s−1

2 )N (1− q)N
N∏
d=1

(−1)
λd
q(
d+1
2 )λ+d(1−d)µ+ds

×
(
qλ; qλ

)
d−1 (qµ; qµ)d−1

(
−qµ(d+1)+r−s; qµ

)
d−1

(
−qλ(d+1)+r+s; qλ

)
d−1

(qµd+λ+r; qλ)d (−q−µd+λ+s; qλ)d (−qλd−µ+s; q−µ)d−1 (qλd+µ+r; qµ)d−1
.
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Fibonacci Corollary for λ = 2, r = 3 and µ = s = 1 :

Corollary 3. For N ≥ 1, we have

detWN = (−1)(
N+2

2 )−1
N∏
d=1

(
d−1∏
t=1

F2t

)(
d−1∏
t=1

Ft

)(
d−1∏
t=1

Ld+t+2

)(
d−1∏
t=1

L2(d+t+2)

)
(

d∏
t=1

L2t−d+1

)(
d−1∏
t=1

L2d−t+1

)(
d∏
t=1

Fd+2t+3

)(
d−1∏
t=1

F2d+t+3

) .
Theorem 4. For 1 ≤ d ≤ n, we have

L−1n,d = (−1)
(λ−1)(d−n)

qλ(
n−d+1

2 ) (1 + q2λd+r+s
)

×
(
qλ; qλ

)
n−1

(
qλd+µ+r; qµ

)
n−1

(
−qλd−µ+s; q−µ

)
n−1

(
−qλ(n+1)+r+s; qλ

)
n−1

(qλ; qλ)n−d (qλ; qλ)d−1 (qλn+µ+r; qµ)n−1 (−qλn−µ+s; q−µ)n−1
(
−qλ(n+d)+r+s; q−λ

)
n

.

Fibonacci Corollary for λ = 2, r = 3 and µ = s = 1 :

Corollary 4. For 1 ≤ d ≤ n, we have

L−1n,d = (−1)
d2+n2

L4(d+1)

(
n−1∏
t=1

F2t

)(
n−1∏
t=1

F2d+t+3

)(
n−1∏
t=1

L2d−t+1

)(
n−1∏
t=1

L2(n+t+2)

)
(
n−d∏
t=1

F2t

)(
d−1∏
t=1

F2t

)(
n−1∏
t=1

F2n+t+3

)(
n−1∏
t=1

L2n−t+1

)(
n∏
t=1

L2(n+d−t+3)

) .
Theorem 5. For 1 ≤ d ≤ n, we have

U−1d,n = (−1)
d+(λ−1)n+1

ir+s+1q(µ−λ)(
n+1
2 )+µ(d−1

2 )−µ−sn+ s−r+1
2

(
1 + q2µd+r−s

)
(1− q)

×
(
qµd+λ+r; qλ

)
n−1

(
qλn+µ+r; qµ

)
n

(
−q−µd+λ+s; qλ

)
n−1

(
−qλn−µ+s; q−µ

)
n

(qλ; qλ)n−1 (qµ; qµ)n−d (qµ; qµ)d−1
(
−qµ(d+1)+r−s; qµ

)
n

(
−qλ(n+1)+r+s; qλ

)
n−1

.

Fibonacci Corollary for λ = 2, r = 3 and µ = s = 1 :

Corollary 5. For 1 ≤ d ≤ n, we have

U−1d,n = (−1)(
d
2)−(n+1

2 )+1
L2(d+1)

(
n−1∏
t=1

Fd+2t+3

)(
n∏
t=1

F2n+t+3

)(
n−1∏
t=1

L2t−d+1

)(
n∏
t=1

L2n−t+1

)
(
n−1∏
t=1

F2t

)(
n−d∏
t=1

Ft

)(
d−1∏
t=1

Ft

)(
n∏
t=1

Ld+t+2

)(
n−1∏
t=1

L2(n+t+2)

) .
Theorem 6. For 1 ≤ i, j ≤ n, we have(

(Wn)
−1
)
i,j

= (−1)
j(λ−1)+i+1

ir+s+1q(
j
2)λ+µ(i−1

2 )+ s−r+1
2 −µ

(
1 + q2λj+r+s

) (
1 + q2µi+r−s

)
(1− q) (qµ; qµ)i−1 (qλ; qλ)j−1

×
∑

max{i,j}≤h≤n

q(
h+1
2 )µ−h(s+jλ)

(
1− qh(λ+µ)+r

)(
1 + qh(λ−µ)+s

)

×
(
qµi+λ+r; qλ

)
h−1

(
−q−µi+λ+s; qλ

)
h−1

(
qλj+µ+r; qµ

)
h−1

(
−qλj−µ+s; q−µ

)
h−1

(qµ; qµ)h−i
(
−qµ(i+1)+r−s; qµ

)
h

(qλ; qλ)h−j
(
−qλ(h+j)+r+s; q−λ

)
h

.

3. The Matrix Z

Now we collect our results related to the matrix Z. For convenience, we use the same letters L,U, but
with a different meaning. We obtain the LU -decomposition Z = L.U :

Theorem 7. For 1 ≤ d ≤ n, we have

Ln,d = (−q)λ(n−d)
(
qλ(n+1)+r+s; qλ

)
d−1

(
qλ(n−1); q−λ

)
d−1

(
−qλd+µ+r; qµ

)
d

(
−qλd−µ+s; q−µ

)
d(

qλ(d+1)+r+s; qλ
)
d−1 (qλ; qλ)d−1 (−qλn+µd+r; q−µ)d (−qλn−µ+s; q−µ)d

.
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Fibonacci Corollary for λ = 2, r = 3 and µ = s = 1 :

Corollary 6. For 1 ≤ d ≤ n, we have

Ln,d =

(
d−1∏
t=1

F2(n−t)

)(
d−1∏
t=1

F2(n+t+2)

)(
d∏
t=1

L2d+t+3

)(
d∏
t=1

L2d−t+1

)
(
d−1∏
t=1

F2t

)(
d−1∏
t=1

F2(d+t+2)

)(
d∏
t=1

L2n+d−t+4

)(
d∏
t=1

L2n−t+1

) .

Theorem 8. For 1 ≤ d ≤ n, we have

Ud,n = i−2λd−r−sqλ(
d+1
2 )+µn(1−d)+ds+ r−s

2

×
(
qλ; qλ

)
d−1 (qµ; qµ)n−1

(
qµ(n+1)+r−s; qµ

)
d−1

(
qλ(d+1)+r+s; qλ

)
d−1

(qµ; qµ)n−d (−qλd−µ+s; q−µ)d−1 (−qµn+λ+r; qλ)d (−qλd+µ+r; qµ)d−1 (−q−µn+λ+s; qλ)d
.

Fibonacci Corollary for λ = 2, r = 3 and µ = s = 1 :

Corollary 7. For 1 ≤ d ≤ n, we have

Ud,n = (−1)
d2+n−dn−1

52(d−1)

(
d−1∏
t=1

F2t

)(
n−1∏
t=1

Ft

)(
d−1∏
t=1

Fn+t+2

)(
d−1∏
t=1

F2(d+t+2)

)
(
n−d∏
t=1

Ft

)(
d−1∏
t=1

L2d−t+1

)(
d∏
t=1

Ln+2t+3

)(
d−1∏
t=1

L2d+t+3

)(
d∏
t=1

L2t−n+1

) .
Theorem 9. For N ≥ 1, we have

detZN = i(−r−s)Nq(
r−s
2 )N

N∏
d=1

(−1)
λd
q(
d+1
2 )λ+d(1−d)µ+ds

×
(
qλ; qλ

)
d−1 (qµ; qµ)d−1

(
qµ(d+1)+r−s; qµ

)
d−1

(
qλ(d+1)+r+s; qλ

)
d−1

(−qµd+λ+r; qλ)d (−q−µd+λ+s; qλ)d (−qλd−µ+s; q−µ)d−1 (−qλd+µ+r; qµ)d−1
.

Fibonacci Corollary for λ = 2, r = 3 and µ = s = 1 :

Corollary 8. For N ≥ 1, we have

detZN = (−1)(
N+2

2 )−1 5N(N−1)
N∏
d=1

(
d−1∏
t=1

F2t

)(
d−1∏
t=1

Ft

)(
d−1∏
t=1

Fd+t+2

)(
d−1∏
t=1

F2d+2t+4

)
(
d−1∏
t=1

L2d−t+1

)(
d∏
t=1

Ld+2t+3

)(
d−1∏
t=1

L2d+t+3

)(
d∏
t=1

L2t−d+1

) .
Theorem 10. For 1 ≤ d ≤ n, we have

L−1n,d = (−1)
(λ+1)(n−d)

qλ(
n−d+1

2 ) (1− q2λd+r+s)
×

(
−qλd+µ+r; qµ

)
n−1

(
−qλd−µ+s; q−µ

)
n−1

(
qλ; qλ

)
n−1

(
qλ(2n−1)+r+s; q−λ

)
n−1

(−qλn+µ+r; qµ)n−1 (qλ; qλ)d−1 (qλ; qλ)n−d (−qλn−µ+s; q−µ)n−1
(
qλ(n+d)+r+s; q−λ

)
n

.

Fibonacci Corollary for λ = 2, r = 3 and µ = s = 1 :

Corollary 9. For 1 ≤ d ≤ n, we have

L−1n,d = (−1)
n2+d2

F4(d+1)

(
n−1∏
t=1

F2t

)(
n−1∏
t=1

L2d+t+3

)(
n−1∏
t=1

L2d−t+1

)(
n−1∏
t=1

F2(2n−t+2)

)
(
d−1∏
t=1

F2t

)(
n−d∏
t=1

F2t

)(
n−1∏
t=1

L2n+t+3

)(
n−1∏
t=1

L2n−t+1

)(
n∏
t=1

F2(n+d−t+3)

) .
Theorem 11. For 1 ≤ d ≤ n and arbitrary integers µ, r, s such that

(
qµ(n+1)+r−s; qµ

)
d−1 6= 0, we have

U−1d,n = (−1)
d+(λ−1)n

ir+sq(µ−λ)(
n+1
2 )+µ(d−1

2 )−µ−sn− r−s2
(
1− q2µd+r−s

)
×
(
−qλn+µ+r; qµ

)
n

(
−qµd+λ+r; qλ

)
n−1

(
−q−µd+λ+s; qλ

)
n−1

(
−qλn−µ+s; q−µ

)
n

(qλ; qλ)n−1 (qµ; qµ)n−d (qµ; qµ)d−1
(
qµ(d+1)+r−s; qµ

)
n

(
qλ(n+1)+r+s; qλ

)
n−1

.
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Fibonacci Corollary for λ = 2, r = 3 and µ = s = 1 :

Corollary 10. For 1 ≤ d ≤ n, we have

U−1d,n = (−1)(
d
2)−(n+1

2 )+1
52(1−n)F2(d+1)

(
n∏
t=1

L2n+t+3

)(
n−1∏
t=1

Ld+2t+3

)(
n−1∏
t=1

L2t−d+1

)(
n∏
t=1

L2n−t+1

)
(
n−1∏
t=1

F2t

)(
n−d∏
t=1

Ft

)(
d−1∏
t=1

Ft

)(
n∏
t=1

Fd+t+2

)(
n−1∏
t=1

F2(n+t+2)

) .
Theorem 12. For 1 ≤ i, j ≤ n, we have

(
(Zn)

−1
)
i,j

= (−1)
i−j−jλ

ir+sqλ(
j
2)+µ(i2)−iµ−

r−s
2

(
1− q2µi+r−s

) (
1− q2λj+r+s

)
(qµ; qµ)i−1 (qλ; qλ)j−1

×
∑

max{i,j}≤h≤n

qµ(h+1
2 )−h(s+jλ)

(
1 + qh(λ+µ)+r

)(
1 + qh(λ−µ)+s

)(
qλ(2h−1)+r+s; q−λ

)
h−1

×
(
−qµi+λ+r; qλ

)
h−1

(
−q−µi+λ+s; qλ

)
h−1

(
−qλj+µ+r; qµ

)
h−1

(
−qλj−µ+s; q−µ

)
h−1

(qλ; qλ)h−j (qµ; qµ)h−i
(
qµ(i+1)+r−s; qµ

)
h

(
qλ(h+1)+r+s; qλ

)
h−1

(
qλ(h+j)+r+s; q−λ

)
h

.

4. Proof

It is mentioned as in the Introduction section, we give now two proofs about the matrix W. We will not
give proofs related with the matrix Z. But we shall note that the proofs for the matrix Z will be similar to the
matrix W We start with an introductory remark. For all the identities that we need to prove, experiments
indicate that they are Gosper-summable. However, the entries that we encounter in our instances, do not
qualify for the q-Zeilberger algorithm that we used in our earlier papers. Therefore, it was necessary to guess
the relevant quantities; the justification is then complete routine. However, this guessing procedure is (with
all the parameters involved) extremely time consuming, and so we confined ourselves to the demonstration of
one such proof. We hope that extensions of the q-Zeilberger algorithm will be developed that fit our needs.

We deal now with ∑
d≤t≤m

Lm,tL
−1
t,d

and prove that it is 1 for d = m (there is only one term in the sum) and 0 for d > m since we have lower
triangular matrices. So let us assume m > d. We will prove a general formula depending on an extra variable
K: ∑

d≤t≤K

Lm,tL
−1
t,d = (−1)

K+d(λ−1)+λm
qλ((

K+1
2 )+(d2)−m(K−1)−d)

×
(
−qλ+r+s; qλ

)
d

(
1 + q2λd+r+s

) (
−q−λd+µ−s; qµ

)
K

(qλ; qλ)d−1
(
1 + qλ(d+m)+r+s

) (
1− qλ(m−d)

)
(−q−λm+µ−s; qµ)K

×
(
qλd+µ+r; qµ

)
K

(
qλ; qλ

)
m−1

(
−qλ+r+s; qλ

)
m+K

(qλm+µ+r; qµ)K (qλ; qλ)m−K−1 (qλ; qλ)K−d (−qλ+r+s; qλ)m (−qλ+r+s; qλ)K+d

.

The formula we need follows from settingK := m. Note that the RHS of formula equals 0 whenK = m > d
because of the term (qλ; qλ)m−K−1 in the denominator of the third row. The proof of the formula is by
induction. Clearly it is true for K = d, and the induction step amounts to show that∑

d≤t≤K

Lm,tL
−1
t,d + Lm,K+1L

−1
K+1,d =

∑
d≤t≤K+1

Lm,tL
−1
t,d .
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Here consider the LHS of the claim∑
d≤t≤K

Lm,tL
−1
t,d + Lm,K+1L

−1
K+1,d

= (−1)
K+d(λ−1)+λm

qλ((
K+1

2 )+(d2)−m(K−1)−d)

×
(
1 + q2λd+r+s

) (
qλ; qλ

)
m−1

(
−qλ+r+s; qλ

)
d(

1 + qλ(d+m)+r+s
) (

1− qλ(m−d)
)

(−qλ+r+s; qλ)m (qλ; qλ)d−1

×
(
−qλ+r+s; qλ

)
m+K

(
−q−λd+µ−s; qµ

)
K

(
qλd+µ+r; qµ

)
K

(qλ; qλ)m−K−1 (qλ; qλ)K−d (−qλ+r+s; qλ)K+d (−q−λm+µ−s; qµ)K (qλm+µ+r; qµ)K

+ (−1)
K+d(λ−1)+λm+1

qλ((
K+1

2 )+(d2)+1−d−K(m−1))

×
(
1 + q2λd+r+s

) (
1− q(λ+µ)(K+1)+r

)(
1 + q(µ−λ)(K+1)−s

) (qλ; qλ
)
m−1

(
−qλ+r+s; qλ

)
d

(qλ; qλ)d−1 (−qλ+r+s; qλ)m

×
(
qλd+µ+r; qµ

)
K

(
−q−λd+µ−s; qµ

)
K

(
−qλ+r+s; qλ

)
m+K

(qλ; qλ)m−K−1 (qλ; qλ)K+1−d (qλm+µ+r; qµ)K+1 (−q−λm+µ−s; qµ)K+1 (−qλ+r+s; qλ)d+K+1

,

which, after some simple algebra and simplifications, gives us∑
d≤t≤K+1

Lm,tL
−1
t,d ,

as claimed.
As a second proof, we will prove the result about LU-decomposition of the matrix.
First, we show that

∑
t Ld,tUt,n is indeed the matrix W, that is,

∑
1≤t≤min{d,n}

Ld,tUt,n = (−1)
λd

i−r−s+1qλd+
r+s−1

2
(1− q)

(1− qλd+µn+r) (1 + qλd−µn+s)
.

We can assume without loss of generality that n ≥ d as well as we will prove a general formula depending
on an extra variable K:∑
K≤t≤d

Ld,tUt,n = (−1)
λd

i−r−s+1q
r+s−1

2 +dλ+nµ(1− q)
(
qλ; qλ

)
d−1 (qµ; qµ)n−1

1

(1 + qλd−µn+s) (1− qλd+µn+r)

×
q((

K
2 )−(K−1)d)λ+((K2 )−Kn)µ (−q(d+1)λ+r+s; qλ

)
K−1

(
−q(n+1)µ+r−s; qµ

)
K−1

(qλ; qλ)d−K (qµ; qµ)n−K (−q−µn+λ+s; qλ)K−1 (qµn+λ+r; qλ)K−1 (qλd+µ+r; qµ)K−1 (−q−λd+µ−s; qµ)K−1
.

The formula we need follows from setting K := 1. The proof of the formula is by induction. Clearly it is
true for K = d, and the induction step amounts to show that∑

K−1≤t≤d

Ld,tUt,n = Ld,K−1UK−1,n +
∑

K≤t≤d

Ld,tUt,n.

By the induction hypothesis and and the definitions of the matrices L and U, we have the claim after some
rearrangements.

Now we turn to the inverse matrix. Since

L−1n,d = (−1)
(λ−1)(d−n)

qλ(
n−d+1

2 ) (1 + q2λd+r+s
)

×
(
qλ; qλ

)
n−1

(
qλd+µ+r; qµ

)
n−1

(
−qλd−µ+s; q−µ

)
n−1

(
−qλ(n+1)+r+s; qλ

)
n−1

(qλ; qλ)n−d (qλ; qλ)d−1 (qλn+µ+r; qµ)n−1 (−qλn−µ+s; q−µ)n−1
(
−qλ(n+d)+r+s; q−λ

)
n
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and

U−1d,n = (−1)
d+(λ−1)n+1

ir+s+1q(µ−λ)(
n+1
2 )+µ(d−1

2 )−µ−sn+ s−r+1
2

(
1 + q2µd+r−s

)
(1− q)

×
(
qµd+λ+r; qλ

)
n−1

(
qλn+µ+r; qµ

)
n

(
−q−µd+λ+s; qλ

)
n−1

(
−qλn−µ+s; q−µ

)
n

(qλ; qλ)n−1 (qµ; qµ)n−d (qµ; qµ)d−1
(
−qµ(d+1)+r−s; qµ

)
n

(
−qλ(n+1)+r+s; qλ

)
n−1

,

we write (
(Wn)

−1
)
i,j

=
∑
h

U−1i,hL
−1
h,j

= (−1)
j(λ−1)+i+1

ir+s+1q(
j
2)λ+µ(i−1

2 )+ s−r+1
2 −µ

(
1 + q2λj+r+s

) (
1 + q2µi+r−s

)
(1− q) (qµ; qµ)i−1 (qλ; qλ)j−1

×
∑
h

q(
h+1
2 )µ−h(s+jλ)

(
1− qh(λ+µ)+r

)(
1 + qh(λ−µ)+s

)
×
(
qµi+λ+r; qλ

)
h−1

(
−q−µi+λ+s; qλ

)
h−1

(
qλj+µ+r; qµ

)
h−1

(
−qλj−µ+s; q−µ

)
h−1

(qµ; qµ)h−i
(
−qµ(i+1)+r−s; qµ

)
h

(qλ; qλ)h−j
(
−qλ(h+j)+r+s; q−λ

)
h

.

The final formula as given in the theorem follows from some straightforward simplifications. Unfortunately,
the sum cannot be evaluated in closed form.
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[12] E. Kılıç and H. Prodinger, The generalized q-Pilbert matrix, Math. Slovaca 64 (5) (2014), 1083–1092.
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