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Abstract. We give a systematic approach to compute certain sums of

squares of Fibonomial coefficients with finite products of generalized Fi-

bonacci and Lucas numbers as coefficients. The technique is to rewrite
everything in terms of a variable q, and then to use generating functions

and Rothe’s identity from classical q-calculus.

1. Introduction

Define the second order linear sequences {Un} and {Vn} for n ≥ 2 by

Un = pUn−1 + Un−2, U0 = 0, U1 = 1,

Vn = pVn−1 + Vn−2, V0 = 2, V1 = p.

For n ≥ k ≥ 1 and an integer m, define the generalized Fibonomial coefficient
with indices in an arithmetic progression by{

n

k

}
U ;m

:=
UmU2m . . . Unm

(UmU2m . . . Ukm)(UmU2m . . . U(n−k)m)

with
{
n
0

}
U ;m

=
{
n
n

}
U ;m

= 1. When p = m = 1, we obtain the usual Fibono-

mial coefficients, denoted by
{
n
k

}
F

. When m = 1, we obtain the generalized

Fibonomial coefficients, denoted by
{
n
k

}
U
.

A special case is the nth central generalized Fibonomial coefficient with in-
dices in an arithmetic progression, defined as

{
2n
n

}
U ;m

. When m = p = 1, we

obtain the nth central Fibonomial coefficient, denoted by
{

2n
n

}
F

. Our evalua-
tions will be in terms of such numbers.

In this paper, we present three sets of identities which are expressed in the
notion of

{
n
k

}
U ;m

. More importantly, we describe a general methodology how to

evaluate the sums occurring in them, as well as many others.
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Our approach is as follows. We use the Binet forms

Un =
αn − βn

α− β
= αn−1 1− qn

1− q
and Vn = αn + βn = αn(1 + qn)

with q = β/α = −α−2, so that α = i/
√
q where α, β = (p ±

√
∆ )/2 and

∆ = p2 + 4.
Throughout this paper we will use the following notations: the q-Pochhammer

symbol (x; q)n = (1 − x)(1 − xq) · · · (1 − xqn−1) and the Gaussian q-binomial
coefficients [

n

k

]
q

=
(q; q)n

(q; q)k(q; q)n−k
.

The link between the generalized Fibonomial and Gaussian q-binomial coef-
ficients is {

n

k

}
U ;m

= αmk(n−k)

[
n

k

]
qm

with q = −α−2.

We recall that one version of the Cauchy binomial theorem is given by
n∑
k=0

q

(
k+1

2

)[
n

k

]
q

xk =
n∏
k=1

(1 + xqk),

and Rothe’s formula [1] is

n∑
k=0

(−1)kq

(
k
2

)[
n

k

]
q

xk = (x; q)n =

n−1∏
k=0

(1− xqk).

All the identities we will derive hold for general q, and results about general-
ized Fibonacci and Lucas numbers come out as corollaries for the special choice
of q. We will frequently denote

{
n
k

}
U ;1

by
{
n
k

}
U
.

Recently, the authors of [4, 3] computed certain Fibonomial sums with gen-
eralized Fibonacci and Lucas numbers as coefficients. For example, if n and m
are both nonnegative integers, then

2n∑
k=0

{
2n

k

}
U(2m−1)k = Pn,m

m∑
k=1

{
2m− 1

2k − 1

}
U(4k−2)n,

2n+1∑
k=0

{
2n+ 1

k

}
U2mk = Pn,m

m∑
k=0

{
2m

2k

}
U(2n+1)2k,

2n∑
k=0

{
2n

k

}
V(2m−1)k = Pn,m

m∑
k=1

{
2m− 1

2k − 1

}
V(4k−2)n,

2n+1∑
k=0

{
2n+ 1

k

}
V2mk = Pn,m

m∑
k=0

{
2m

2k

}
V(2n+1)2k,



SUMS CONTAINING SQUARES OF FIBONOMIAL COEFFICIENTS 3

where

Pn,m =


n−m∏
k=0

V2k if n ≥ m,
m−n−1∏
k=1

V −1
2k if n < m;

alternating analogues of these sums were also presented. In particular, if m is
a small number, we can think about this as the closed form evaluation of the
left-hand side in terms of the finitely many terms of the right-hand side.

In this paper we investigate similar sums, but the Fibonomial coefficients
appear in squared form. The approach works for Fibonacci and Lucas (-type)
numbers as factors likewise. We only discuss the Fibonacci case, but add two
Lucas examples at the very end of the paper.

We would like to end this introduction by pointing out a few papers that are
similar in spirit than our current investigation: [2, 5, 6].

2. A systematic approach

We are interested to evaluate
n∑
k=0

{
n

k

}2

U

Uλ1k+r1 . . . Uλsk+rs

in closed form where ri and λi ≥ 1 are integers. For that, it will be translated
into q-notation:

(1− q)−s
n∑
k=0

(−1)k(n−1)q−k(n−k)

[
n

k

]2

q

i(λ1+···+λs)k+r1+···+rs−s

× q s
2−

k
2 (λ1+···+λs)− 1

2 (r1+···+rs)(1− qλ1k+r1) · · · (1− qλsk+rs).

For our method to work, the factor (−1)k must appear. That means that we
have two possibilities:

• n is even and λ1 + · · ·+ λs ≡ 0 (mod 4)
• n is odd and λ1 + · · ·+ λs ≡ 2 (mod 4)

On the other hand, if

• n is even and λ1 + · · ·+ λs ≡ 2 (mod 4)
• n is odd and λ1 + · · ·+ λs ≡ 0 (mod 4),

then we are able to evaluate
n∑
k=0

{
n

k

}2

U

Uλ1k+r1 . . . Uλsk+rs(−1)k

in closed form.
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Here is how it goes: Expanding the product

(1− qλ1k+r1) · · · (1− qλsk+rs)

and ignoring constant factors, we have to evaluate a finite number of terms of
the form

n∑
k=0

(−1)kqk
2+µk−nk

[
n

k

]2

q

where µ is an integer. Now we will explain how this can be done.
n∑
k=0

(−1)kqk
2+µk−nk

[
n

k

]2

q

= q−(n
2)

n∑
k=0

(−1)kq(
k
2)+(n−k

2 )+µk

[
n

k

]
q

[
n

n− k

]
q

and

S =

n∑
k=0

(−1)kq(
k
2)+(n−k

2 )+µk

[
n

k

]
q

[
n

n− k

]
q

= [zn]

(∑
k≥0

(−1)kq(
k
2)+µk

[
n

k

]
q

zk
)
·
(∑
k≥0

q(
k
2)
[
n

k

]
q

zk
)

= [zn](zqµ; q)n(−z; q)n.

The point is now that there are factors (1 − zqi) and (1 + zqi) that can be
combined to (1 − z2q2i). (That is the reason that we need the factor (−1)k in
our sums, as mentioned before.) In fact, there are n − |µ| such pairs, and only
2|µ| separate factors. They mess up the final result, but since µ is a constant
(not depending on n), there is no principal difficulty involved. We have again
to evaluate a finite number of terms of the form

[zn]zaqb(z2qc; q2)n−|µ| = [zn−a]qb(z2qc; q2)n−|µ|.

This is either 0 for n− a odd or

qb+
c(n−a)

2

[
n− |µ|
n−a

2

]
q2

(−1)
n−a

2 qn−a

otherwise.
Eventually we end up with a (finite) linear combination of terms of the form[

n− |µ|
n−a

2

]
q2

for some integers µ and a. The final step is to translate such a result back to

expressions in terms of
{
n−|µ|

(n−a)/2

}
U ;2

and simplify according to the Binet formula

and the recursion of second order for Un.
In the remaining sections, this general program will be demonstrated in more

detail on two examples, one for n even and one for n odd. Further, we will list
several attractive formulæ that were obtained using the procedure just described.
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3. Illustrative Examples

Now we work out four examples that fall into the general scheme mentioned
above in more detail. Also we will present some further examples without proof.

Theorem 1. For nonnegative n,

2n∑
k=0

{
2n

k

}2

U2
2k = ∆

{
2n

n

}
U ;2

U3
2nU2n+1

V2n−1V2n
,

where ∆ is defined as before.

Proof. First we convert the left-hand side of the claim in q-notation:

2n∑
k=0

{
2n

k

}2

U2
2k =

1

(1− q)2

2n∑
k=0

[
2n

k

]2

q

α2k(2n−k)α2(2k−1)(1− q2k)2

=
α−2

(1− q)2

2n∑
k=0

[
2n

k

]2

q

α4k+4kn−2k2(1− q2k)2

=
α−2

(1− q)2

2n∑
k=0

[
2n

k

]2

q

i4k+4kn−2k2q−
1
2 (4k+4kn−2k2)

× (1− 2q2k + q4k)

= − q

(1− q)2

2n∑
k=0

[
2n

k

]2

q

(−1)kqk
2−2kn−2k(1− 2q2k + q4k).

Second we convert the right-hand side of the claim in q-notation:

∆

{
2n

n

}
U ;2

U3
2nU2n+1

V2n−1V2n
= (α− β)2α2n2

[
2n

n

]
q2

α3(2n−1) (1−q2n)3

(1−q)3 α2n (1−q2n+1)
(1−q)

α2n−1(1 + q2n−1)α2n(1 + q2n)

= α2n(n+2)

[
2n

n

]
q2

(1− q2n)3(1− q2n+1)

(1 + q2n−1)(1 + q2n)(1− q)2

= (−1)nq−n(n+2)

[
2n

n

]
q2

(1− q2n)3(1− q2n+1)

(1 + q2n−1)(1 + q2n)(1− q)2
.

Thus we need to prove that

2n∑
k=0

[
2n

k

]2

q

(−1)kqk
2−2kn−2k(1− 2q2k + q4k)

= (−1)n+1q−(n+1)2
[
2n

n

]
q2

(1− q2n)3(1− q2n+1)

(1 + q2n−1)(1 + q2n)
.
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Let

S1 =

2n∑
k=0

[
2n

k

]2

q

(−1)
k
qk

2−2kn, S2 =

2n∑
k=0

[
2n

k

]2

q

(−1)kqk
2−2kn−2k

and S3 =

2n∑
k=0

[
2n

k

]2

q

(−1)
k
qk

2−2kn+2k.

Now we consider S1:

2n∑
k=0

[
2n

k

]2

q

(−1)kqk
2−2kn

= q−2n2+n
2n∑
k=0

[
2n

k

]
q

[
2n

2n− k

]
q

(−1)kq(
2n−k

2 )q(
k
2)

= q−2n2+n
[
z2n
]∑
k≥0

[
2n

k

]
q

q(
k
2)zk ·

∑
k≥0

[
2n

2n− k

]
q

(−1)kq(
2n−k

2 )zk

= q−2n2+n
[
z2n
]∑
k≥0

[
2n

k

]
q

q(
k
2)zk ·

∑
k≥0

[
2n

k

]
q

(−1)kq(
k
2)zk

= q−2n2+n
[
z2n
]

(z; q)2n(−z; q)2n

= q−2n2+n
[
z2n
]

(z2; q2)2n

= q−2n2+n

[
2n

n

]
q2

(−1)nq2(n
2)

= q−n
2

(−1)n
[
2n

n

]
q2
.

Now we consider S2:

2n∑
k=0

[
2n

k

]2

q

(−1)kqk
2−2k(n+1)

= q−2n2+n
[
z2n
]∑
k≥0

[
2n

k

]
q

q(
k
2)−2kzk ·

∑
k≥0

[
2n

2n− k

]
q

(−1)kq(
2n−k

2 )zk

= q−2n2+n
[
z2n
]∑
k≥0

[
2n

k

]
q

q(
k
2)−2kzk ·

∑
k≥0

[
2n

k

]
q

(−1)kq(
k
2)zk

= q−2n2+n
[
z2n
]

(z/q2; q)2n(−z; q)2n

= q−2n2+n
[
z2n
]

(1− z/q2)(1− z/q)(z; q)2n−2(1 + zq2n−1)

× (1 + zq2n−2)(−z; q)2n−2
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= q−2n2+n
[
z2n
]

(z2; q2)2n−2

(
1− zq−2(1− q2n)(1 + q)

− q−3z2(−1− q4n + q2n+1 + q2n−1 + 2q2n)

+ z3q2n−5(1 + q)(1− q2n) + q4n−6z4
)

= q−2n2+n
[
z2n
]

(z2; q2)2n−2

(
1− q−3(−1− q4n + q2n+1 + q2n−1 + 2q2n)z2

+ q4n−6z4
)
,

= q−2n2+n

([
2n− 2

n

]
q2

(−1)nq2(n
2)

− q−3(−1− q4n + q2n+1 + q2n−1 + 2q2n)(−1)n−1q2(n−1
2 )
[
2n− 2

n− 1

]
q2

+ q4n−6(−1)n−2q2(n−2
2 )
[
2n− 2

n− 2

]
q2

)
= 2

[
2n− 2

n

]
q2

(−1)nq−n
2

+ q−n
2−2n−1(−1− q4n + q2n+1 + q2n−1 + 2q2n)(−1)n

[
2n− 2

n− 1

]
q2
.

A similar computation evaluates S3:

S3 = q−2n2+n
[
z2n
]

(z2q4; q2)2n−2

(
1 + z(1− q2n)(1 + q) + q4n+2z4

− qz2(−1 + q2n+1 + q2n−1 + 2q2n − q4n)− z3q2n+1(1 + q)(1− q2n)
)

= q−2n2+n
[
z2n
]

(z2q4; q2)2n−2

(
1 + q4n+2z4

− qz2(−1 + q2n+1 + q2n−1 + 2q2n − q4n)
)

= 2q−n
2+4n(−1)n

[
2n− 2

n

]
q2

+ q−n
2+2n−1(−1 + q2n+1 + q2n−1 + 2q2n − q4n)(−1)n

[
2n− 2

n− 1

]
q2
.

Thus our sum in q-notation is

2n∑
k=0

[
2n

k

]2

q

(−1)kqk
2−2kn−2k(1− 2q2k + q4k) = S2 − 2S1 + S3

= q−(n+1)2(−1)n+1

[
2n

n

]
q2

(1− q2n)3(1− q2n+1)

(1 + q2n−1)(1 + q2n)
,
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as claimed. �

Theorem 2. For nonnegative integer n,

2n+1∑
k=0

{
2n+ 1

k

}2

U2
2k(−1)k = −2

V1U2n+1U2n+2

V2n

{
2n+ 1

n

}
U ;2

.

Proof. First we convert the left-hand side of the claim in q-notation:

2n+1∑
k=0

{
2n+ 1

k

}2

U2
2k(−1)k

= − q

(1− q)2

2n+1∑
k=0

[
2n+ 1

k

]2

q

(−1)kqk
2−2kn−3k(1− q2k)2.

Now we convert the right-hand side of it:

− 2
V1U2n+1U2n+2

V2n

{
2n+ 1

n

}
U ;2

= 2(−1)nq−(n+1)2 (1 + q)(1− q2n+1)(1− q2n+1)

(1 + q2n)(1− q)2

[
2n+ 1

n

]
q2
.

Thus we must prove that

2n+1∑
k=0

[
2n+ 1

k

]2

q

(−1)kqk
2−2kn−3k(1− q2k)2

= 2(−1)n+1q−n
2−2n−2 (1 + q)(1− q2n+1)(1− q2n+1)

(1 + q2n)

[
2n+ 1

n

]
q2
.

Let

S4 =

2n+1∑
k=0

[
2n+ 1

k

]2

q

(−1)kqk
2−2kn−3k, S5 =

2n+1∑
k=0

[
2n+ 1

k

]2

q

(−1)kqk
2−2kn−k,

S6 =
2n+1∑
k=0

[
2n+ 1

k

]2

q

(−1)kqk
2−2kn+k.

Thus for S4, consider

S4 =

2n+1∑
k=0

[
2n+ 1

k

]2

q

(−1)kqk
2−2kn−3k

= q−2n2−n
2n+1∑
k=0

[
2n+ 1

k

]
q

[
2n+ 1

2n+ 1− k

]
q

(−1)kq(
2n+1−k

2 )q(
k
2)−2k
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= q−2n2−n [z2n+1
]∑
k≥0

[
2n+ 1

k

]
q

q(
k
2)−2kzk ·

∑
k≥0

[
2n+ 1

k

]
q

(−1)kq(
k
2)zk

= q−2n2−n [z2n+1
]

(z/q2; q)2n+1(−z; q)2n+1

= q−2n2−n [z2n+1
]

(1− z/q)(1− z/q2)(z; q)2n−1

× (1 + zq2n−1)(1 + zq2n)(−z; q)2n−1

= q−2n2−n [z2n+1
] (
z2; q2)2n−1(1− zq−2(1 + q)(1− q2n+1)

+ z2q−3(1− q2n+2 + q4n+2 − q2n − 2q2n+1)

+ z3q2n−4(1 + q)(1− q2n+1) + q4n−4z4
)

= −q−2n2−n−2
[
z2n
]

(z2; q2)2n−1(1 + q)(1− q2n+1)

+ q−2n2+n−4
[
z2n−2

]
(z2; q2)2n−1(1 + q)(1− q2n+1)

= (1 + q)(1− q2n+1)

(
(−q−2n2−n−2q2(n

2)
[
2n− 1

n

]
q2

(−1)n

+ q−2n2+n−4q2(n−1
2 )
[
2n− 1

n− 1

]
q2

(−1)n−1

)
= 2(−1)n−1q−n

2−2n−2(1 + q)(1− q2n+1)

[
2n− 1

n

]
q2
.

Next,

2n+1∑
k=0

[
2n+ 1

k

]2

q

(−1)kqk
2−2kn−k

= q−2n2−n [z2n+1
]∑
k≥0

[
2n+ 1

k

]
q

q(
k
2)zk ·

∑
k≥0

[
2n+ 1

k

]
q

(−1)kq(
k
2)zk

= q−2n2−n [z2n+1
]

(z; q)2n+1(−z; q)2n+1

= q−2n2−n [z2n+1
]

(z2; q2)2n+1 = 0.

A similar computation gives

S6 = 2(−1)nq−n
2+2n(1 + q)(1− q2n+1)

[
2n− 1

n

]
q2
.

Thus our sum in q-notation is

2n+1∑
k=0

[
2n+ 1

k

]2

q

(−1)kqk
2−2kn−3k(1− 2q2k + q4k) = S4 − 2S5 + S6



10 EMRAH KILIÇ AND HELMUT PRODINGER

= 2(−1)n+1q−n
2−2n−2 (1 + q)(1− q2n+1)(1− q2n+2)

(1 + q2n)

[
2n+ 1

n

]
q2
,

as claimed. �

Now we will present some other results without proof:

Theorem 3. For any integer r and nonnegative integer n,

(1)
2n+1∑
k=0

{
2n+ 1

k

}2

U

U2
k+r = U2n+1U2n+1+2r

{
2n

n

}
U ;2

,

(2)
2n+1∑
k=0

{
2n+ 1

k

}2

U

U2k+r = U2n+1V2n+1+r

{
2n

n

}
U ;2

,

(3)

2n+1∑
k=0

{
2n+ 1

k

}2

U

U4k+r(−1)k = −2U2U2n+1V4n+2+r

{
2n− 1

n

}
U ;2

.

Theorem 4. For any integer r and nonnegative integer n,

(1)
2n∑
k=0

{
2n

k

}2

U

=

{
2n

n

}
U ;2

,

(2)
2n∑
k=0

{
2n

k

}2

U

(−1)kU2k+r = 2U2n+r

{
2n− 1

n

}
U ;2

,

(3)
2n∑
k=0

{
2n

k

}2

U

U4
k = U2n−1U

2
2nU2n+1

{
2n− 2

n− 1

}
U ;2

,

(4)

2n∑
k=0

{
2n

k

}2

U

(−1)kU2
3k = 2∆U3U4n

{
2n+ 1

3

}
U

{
2n− 3

n− 2

}
U ;2

,

where ∆ = p2 + 4 is defined as before.

Theorem 5. For nonnegative integer n,

(1)
2n+1∑
k=0

{
2n+ 1

k

}2

V2k = ∆U2
2n+1

{
2n

n

}
U ;2

,
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(2)
2n∑
k=0

{
2n

k

}2

V2k (−1)
k

= 2V2n

{
2n− 1

n

}
U ;2

,

where ∆ is defined as before.
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