THE GENERALIZED LILBERT MATRIX

EMRAH KILIÇ AND HELMUT PRODINGER

Abstract. We introduce a generalized Lilbert [Lucas-Hilbert] matrix. Explicit formulæ are derived for the LU-decomposition and their inverses, as well as the Cholesky decomposition. The approach is to use q-analysis and to leave the justification of the necessary identities to the q-version of Zeilberger's celebrated algorithm.

1. Introduction

The Filbert matrix $H_{n}=\left(\breve{h}_{i j}\right)_{i, j=1}^{n}$ is defined by $\check{h}_{i j}=\frac{1}{F_{i+j-1}}$ as an analogue of the Hilbert matrix where F_{n} is the nth Fibonacci number. It has been defined and studied by Richardson [7].

After the Filbert matrix, several generalizations and analogues of it have been investigated and studied by Kılıç and Prodinger. For the readers convenience, we briefly summarize these generalizations:

- In [1], Kılıç and Prodinger studied the generalized Filbert Matrix \mathcal{F} with entries $\frac{1}{F_{i+j+r}}$, where $r \geq-1$ is an integer parameter.
- After this generalization, Prodinger [6] defined a new generalization of the generalized Filbert matrix by introducing 3 additional parameters by taking its entries as $\frac{x^{i} y^{j}}{F_{\lambda(i+j)+r}}$.
- Recently, in [2], Kılıç and Prodinger gave a further generalization of the generalized Filbert Matrix \mathcal{F} by defining the matrix \mathcal{Q} with entries $h_{i j}$ as follows

$$
h_{i j}=\frac{1}{F_{i+j+r} F_{i+j+r+1} \ldots F_{i+j+r+k-1}},
$$

where $r \geq-1$ is an integer parameter and $k \geq 0$ is an integer parameter.

- In a further paper [4], Kıliç and Prodinger introduced a new kind of generalized Filbert matrix \mathcal{G} with entries $g_{i j}$ by

$$
g_{i j}=\frac{1}{F_{\lambda(i+j)+r} F_{\lambda(i+j+1)+r} \ldots F_{\lambda(i+j+k-1)+r}},
$$

where $r \geq-1$ and $\lambda \geq 1$ are integer parameters.

[^0]- More recently, in [3], Kılıç and Prodinger introduced four generalizations of the Filbert matrix H_{n}, and defined the matrices $\mathcal{P}, \mathcal{K}, \mathcal{L}$ and \mathscr{y} with entries

$$
p_{i j}=\frac{1}{F_{\lambda i+\mu j+r}}, k_{i j}=\frac{F_{\lambda i+\mu j+r}}{F_{\lambda i+\mu j+s}}, \ell_{i j}=\frac{1}{L_{\lambda i+\mu j+r}} \text { and } y_{i j}=\frac{L_{\lambda i+\mu j+r}}{L_{\lambda i+\mu j+s}},
$$

respectively, where s, r, λ and μ are integer parameters such that $s \neq r$, and $r, s \geq$ -1 and $\lambda, \mu \geq 1$.
In the works summarized above, the authors derived explicit formulæ for the LUdecomposition (For any square matrix A, a decomposition $A=L U$, where L is a unit lower triangular matrix and U is an upper triangular matrix, is called LU-decomposition of A) for the matrices mentioned above. Also they derived explicit formulæ their inverses.

Let $\left\{U_{n}\right\}$ and $\left\{V_{n}\right\}$ be generalized Fibonacci and Lucas sequences, respectively, whose the Binet forms are

$$
U_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}=\alpha^{n-1} \frac{1-q^{n}}{1-q} \quad \text { and } \quad V_{n}=\alpha^{n}+\beta^{n}=\alpha^{n}\left(1+q^{n}\right)
$$

with $q=\beta / \alpha=-\alpha^{-2}$, so that $\alpha=\mathbf{i} / \sqrt{q}$.
When $\alpha=\frac{1+\sqrt{5}}{2}$ (or equivalently $q=(1-\sqrt{5}) /(1+\sqrt{5})$), the sequence $\left\{U_{n}\right\}$ is reduced to the Fibonacci sequence $\left\{F_{n}\right\}$ and the sequence $\left\{V_{n}\right\}$ is reduced to the Lucas sequence $\left\{L_{n}\right\}$.
When $\alpha=1+\sqrt{2}$ (or equivalently $q=(1-\sqrt{2}) /(1+\sqrt{2})$), the sequence $\left\{U_{n}\right\}$ is reduced to the Pell sequence $\left\{P_{n}\right\}$ and the sequence $\left\{V_{n}\right\}$ is reduced to the Pell-Lucas sequence $\left\{Q_{n}\right\}$.
In this paper, we define the Lilbert matrix \mathcal{T} with entries $t_{i j}$ by

$$
t_{i j}=\frac{1}{L_{\lambda(i+j)+r} L_{\lambda(i+j+1)+r} \ldots L_{\lambda(i+j+k-1)+r}} .
$$

Throughout this paper we will use the following notations: the q-Pochhammer symbol $(x ; q)_{n}=(1-x)(1-x q) \ldots\left(1-x q^{n-1}\right)$ and for $z>1$, the Gaussian q-binomial coefficients

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{(z, y)}=\frac{\left(q^{z} ; q^{y}\right)_{n}}{\left(q^{z} ; q^{y}\right)_{k}\left(q^{z} ; q^{y}\right)_{n-k}}
$$

and for the case $z=y$, we will denote the Gaussian q-binomial coefficients as

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{z}=\frac{\left(q^{z} ; q^{z}\right)_{n}}{\left(q^{z} ; q^{z}\right)_{k}\left(q^{z} ; q^{z}\right)_{n-k}} .
$$

We could also allow $z \geq 1$, but might have to take limits in some rare cases.
Furthermore, we will use generalized Fibonomial coefficients

$$
\left\{\begin{array}{l}
n \\
k
\end{array}\right\}_{U(a, b)}=\frac{U_{b(n-1)+a} U_{b(n-2)+a} \ldots U_{b(n-k)+a}}{U_{a} U_{b+a} U_{2 b+a} \ldots U_{b(k-1)+a}}
$$

with $\left\{\begin{array}{l}n \\ 0\end{array}\right\}_{U(a, b)}=1$ where U_{n} is the nth generalized Fibonacci number.

For $a=b$, we denote the generalized Fibonomial coefficients as $\left\{\begin{array}{l}n \\ k\end{array}\right\}_{U(a)}$. Especially for $a=b=1$, the generalized Fibonomial coefficients are denoted by $\left\{\begin{array}{l}n \\ k\end{array}\right\}_{U}$. When $U_{n}=F_{n}$, the generalized Fibonomial reduces to the Fibonomial coefficients denoted by $\left\{\begin{array}{l}n \\ k\end{array}\right\}_{F}$:

$$
\left\{\begin{array}{l}
n \\
k
\end{array}\right\}_{F}=\frac{F_{n} F_{n-1} \ldots F_{n-k+1}}{F_{1} F_{2} \ldots F_{k}}
$$

Similarly, when $U_{n}=P_{n}$, the generalized Fibonomial reduces to the Pellnomial coefficients denoted by $\left\{\begin{array}{l}n \\ k\end{array}\right\}_{P}$:

$$
\left\{\begin{array}{l}
n \\
k
\end{array}\right\}_{P}=\frac{P_{n} P_{n-1} \ldots P_{n-k+1}}{P_{1} P_{2} \ldots P_{k}}
$$

The link between the generalized Fibonomial and Gaussian q-binomial coefficients is

$$
\left\{\begin{array}{l}
n \\
k
\end{array}\right\}_{(z, y)}=\alpha^{y k(n-k)}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{(z, y)} \quad \text { with } \quad q=-\alpha^{-2}
$$

Furthermore, we will use generalized Lucanomial coefficients

$$
\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle_{V(a, b)}=\frac{V_{b(n-1)+a} V_{b(n-2)+a} \ldots V_{b(n-k)+a}}{V_{a} V_{b+a} V_{2 b+a} \ldots V_{b(k-1)+a}}
$$

with $\left\langle\begin{array}{l}n \\ 0\end{array}\right\rangle_{(a, b)}=1$ where V_{n} is the nth generalized Lucas number.
For $a=b$, we denote the generalized Lucanomial coefficients as $\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle_{V(a)}$. Especially for $a=b=1$, the generalized Lucanomial coefficients are denoted by $\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle_{V}$. When $V_{n}=L_{n}$, the generalized Lucanomial coefficients are reduced to the Lucanomial coefficients denoted by $\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle_{L}$:

$$
\left\langle\begin{array}{c}
n \\
k
\end{array}\right\rangle_{L}=\frac{L_{n} L_{n-1} \ldots L_{n-k+1}}{L_{1} L_{2} \ldots L_{k}} .
$$

When $V_{n}=Q_{n}$, the generalized Lucanomial coefficients are reduced to the Pell-Lucanomial coefficients denoted by $\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle_{Q}$:

$$
\left\langle\begin{array}{c}
n \\
k
\end{array}\right\rangle_{Q}=\frac{Q_{n} Q_{n-1} \ldots Q_{n-k+1}}{Q_{1} Q_{2} \ldots Q_{k}} .
$$

The link between the generalized Lucanomial and Gaussian q-binomial coefficients is

$$
\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle_{V(z, y)}=\alpha^{y k(n-k)}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{(-z, y)} \quad \text { with } \quad q=-\alpha^{-2}
$$

Considering the definitions of the matrix \mathcal{T} and the q-Pochhammer symbol, we rewrite the matrix $\mathcal{T}=\left[t_{i j}\right]$ as

$$
t_{i j}=\mathbf{i}^{k(\lambda(i+j)+r)+\frac{\lambda k(k-1)}{2}} q^{-\frac{k}{2}(\lambda(i+j)+r)-\frac{\lambda k(k-1)}{4}}\left(-q^{\lambda(i+j)+r} ; q^{\lambda}\right)_{k}
$$

We call the matrix \mathcal{T}_{n} the generalized Lilbert matrix.
We will derive explicit formulæ for the LU-decomposition for the matrix \mathcal{T}_{n}. We also derive explicit formula for its inverse. Similarly to the results of $[1,2,4,6]$, the size of the matrix does not really matter, and one can think about an infinite matrix \mathfrak{T} and restrict
it whenever necessary to the first n rows resp. columns and write \mathcal{T}_{n}. The entries of the inverse matrix \mathfrak{T}_{n}^{-1} are not closed form expressions, as in our previous paper [1, 2], but can only be given as a (simple) sum. We also provide the Cholesky decomposition. All the identities we will obtain hold for general q, and results about Lucas and Fibonacci numbers as well as Pell numbers etc., come out as corollaries for a special choice of q.

Firstly, we mention our general results depending on λ and then give their specializaitons for $\lambda=1$. After that, we give examples of these results for the Lucas and Pell-Lucas numbers by taking special cases of q.

We will obtain the LU-decomposition $\mathcal{T}=L \cdot U$:
Theorem 1. For $1 \leq d \leq n$ we have

$$
L_{n, d}=\mathbf{i}^{\lambda k(d-n)} q^{\frac{\lambda k(n-d)}{2}}\left[\begin{array}{c}
2 d+k-1 \\
d
\end{array}\right]_{\left(-q^{\lambda+r} ; q^{\lambda}\right)}\left[\begin{array}{c}
n+d+k-1 \\
n
\end{array}\right]_{\left(-q^{\lambda+r} ; q^{\lambda}\right)}^{-1}\left[\begin{array}{l}
n-1 \\
d-1
\end{array}\right]_{\left(q^{\lambda} ; q^{\lambda}\right)} .
$$

Its generalized Fibonacci-Lucas corollary:
Corollary 1. For $1 \leq d \leq n$,

$$
L_{n, d}=\left\langle\begin{array}{c}
2 d+k-1 \\
d
\end{array}\right\rangle_{V(\lambda+r, \lambda)}\left\langle\begin{array}{c}
n+d+k-1 \\
n
\end{array}\right\rangle_{V(\lambda+r, \lambda)}^{-1}\left\{\begin{array}{l}
n-1 \\
d-1
\end{array}\right\}_{U(\lambda)}
$$

As a consequence of Theorem 1 for $\lambda=1$, we have
Corollary 2. For $1 \leq d \leq n$,

$$
L_{n, d}=\mathbf{i}^{k(d-n)} q^{\frac{k(n-d)}{2}}\left[\begin{array}{c}
2 d+r+k-1 \\
d+r
\end{array}\right]_{(-q ; q)}\left[\begin{array}{c}
n+d+r+k-1 \\
n+r
\end{array}\right]_{(-q ; q)}^{-1}\left[\begin{array}{l}
n-1 \\
d-1
\end{array}\right]_{(q ; q)}
$$

In the $\lambda=1$ case, its generalized Fibonacci-Lucas corollary:
Corollary 3. For $1 \leq d \leq n$,

$$
L_{n, d}=\left\langle\begin{array}{c}
2 d+r+k-1 \\
d+r
\end{array}\right\rangle_{V}\left\langle\begin{array}{c}
n+d+r+k-1 \\
n+r
\end{array}\right\rangle_{V}^{-1}\left\{\begin{array}{l}
n-1 \\
d-1
\end{array}\right\}_{U}
$$

From the corollaries above, we have the following examples: For $r=1$ and $q=$ $(1-\sqrt{5}) /(1+\sqrt{5})$, we obtain a Fibonacci and Lucas consequence of Corollary 3:

$$
L_{n, d}=\left\langle\begin{array}{c}
2 d+k \\
d+1
\end{array}\right\rangle_{L}\left\langle\begin{array}{c}
n+d+k \\
n+1
\end{array}\right\rangle_{L}^{-1}\left\{\begin{array}{c}
n-1 \\
d-1
\end{array}\right\}_{F}
$$

For $r=0$ and $q=(1-\sqrt{2}) /(1+\sqrt{2})$, we obtain a Pell and Pell-Lucas consequence of Corollary 3:

$$
L_{n, d}=\left\langle\begin{array}{c}
2 d+k-1 \\
d
\end{array}\right\rangle_{Q}\left\langle\begin{array}{c}
n+d+k-1 \\
n
\end{array}\right\rangle_{Q}^{-1}\left\{\begin{array}{l}
n-1 \\
d-1
\end{array}\right\}_{P}
$$

Theorem 2. For $1 \leq d \leq n$ we have

$$
U_{d, n}=(-1)^{d-1} \mathbf{i}^{-\lambda k(d+n)-\frac{\lambda k^{2}}{2}+\frac{\lambda k}{2}-k r} q^{\frac{\lambda k(d+n)}{2}+\frac{\lambda k(k-1)}{4}-\lambda d+\lambda d^{2}+r(d-1)+\frac{r k}{2}}
$$

$$
\times\left[\begin{array}{c}
d+n+k-1 \\
n
\end{array}\right]_{\left(-q^{\lambda+r} ; q^{\lambda}\right)}^{-1}\left[\begin{array}{c}
d+k-2 \\
k-1
\end{array}\right]_{\left(q^{\lambda} ; q^{\lambda}\right)}\left[\begin{array}{l}
n-1 \\
d-1
\end{array}\right]_{\left(q^{\lambda} ; q^{\lambda}\right)} \frac{\left(q^{\lambda} ; q^{\lambda}\right)_{d-1}^{2}}{\left(-q^{\lambda+r} ; q^{\lambda}\right)_{2 d+k-2}}
$$

As a generalized Fibonacci-Lucas corollary of Theorem 2, we have
Corollary 4. For $1 \leq d \leq n$

$$
\begin{aligned}
& U_{d, n}=(-1)^{(1+d)(1-\lambda+r)}(\alpha-\beta)^{2(d-1)}\left\langle\begin{array}{c}
d+n+k-1 \\
n
\end{array}\right\rangle_{V(\lambda+r, \lambda)}^{-1} \\
& \times\left\{\begin{array}{c}
d+k-2 \\
k-1
\end{array}\right\}_{U(\lambda)}\left\{\begin{array}{c}
n-1 \\
d-1
\end{array}\right\}_{U(\lambda)}\left(\prod_{t=1}^{2 d+k-2} V_{t \lambda+r}\right)^{-1}\left(\prod_{t=1}^{d-1} U_{t \lambda}\right)^{2} .
\end{aligned}
$$

As a consequence of Theorem 2 for $\lambda=1$, we have
Corollary 5. For $1 \leq d \leq n$

$$
\begin{aligned}
& U_{d, n}=(-1)^{i-1} \mathbf{i}^{-k(d+n)-\frac{k^{2}}{2}+\frac{k}{2}-k r} q^{\frac{k(d+n)}{2}+\frac{k(k-1)}{4}-d+d^{2}+r(d-1)+\frac{r k}{2}} \\
& \times\left[\begin{array}{c}
2 d+r+k-2 \\
d-1
\end{array}\right]_{(-q ; q)}^{-1}\left[\begin{array}{c}
d+n+r+k-1 \\
n+r
\end{array}\right]_{(-q ; q)}^{-1} \\
& \times\left[\begin{array}{c}
2 d+k-2 \\
d-1
\end{array}\right]_{(-q ; q)}\left[\begin{array}{c}
d+k-2 \\
k-1
\end{array}\right]_{(q ; q)}\left[\begin{array}{c}
n-1 \\
d-1
\end{array}\right]_{(q ; q)} \frac{(q ; q)_{d-1}^{2}}{(-q ; q)_{2 d+k-2}^{2}} .
\end{aligned}
$$

And its generalized Fibonacci-Lucas corollary:
Corollary 6. For $1 \leq d \leq n$

$$
\begin{aligned}
& U_{d, n}=(-1)^{(d-1) r}(\alpha-\beta)^{2(d-1)} \\
& \times\left\langle\begin{array}{c}
2 d+r+k-2 \\
d-1
\end{array}\right\rangle_{V}^{-1}\left\{\begin{array}{c}
d+n+r+k-1 \\
n+r
\end{array}\right\rangle_{V}^{-1}\left\langle\begin{array}{c}
2 d+k-2 \\
d-1
\end{array}\right\rangle_{V} \\
& \times\left\{\begin{array}{c}
d+k-2 \\
k-1
\end{array}\right\}_{U}\left\{\begin{array}{c}
n-1 \\
d-1
\end{array}\right\}_{U}\left(\prod_{t=1}^{d-1} U_{t}\right)^{2}\left(\prod_{t=1}^{2 d+k-2} V_{t}\right)^{-1} .
\end{aligned}
$$

From the Corollaries above, we give the following examples:
For $r=1$ and $q=(1-\sqrt{5}) /(1+\sqrt{5})$, we obtain a Fibonacci and Lucas consequence of Corollary 6 :

$$
\begin{aligned}
U_{d, n} & =(-1)^{d-1} 5^{d-1}\left\langle\begin{array}{c}
2 d+k-1 \\
d-1
\end{array}\right\rangle_{L}^{-1}\left\langle\begin{array}{c}
d+n+k \\
n+1
\end{array}\right\rangle_{L}^{-1}\left\langle\begin{array}{c}
2 d+k-2 \\
d-1
\end{array}\right\rangle_{L} \\
& \times\left\{\begin{array}{c}
d+k-2 \\
k-1
\end{array}\right\}_{F}\left\{\begin{array}{l}
n-1 \\
d-1
\end{array}\right\}_{F}\left(\prod_{t=1}^{d-1} F_{t}\right)^{2}\left(\prod_{t=1}^{2 d+k-2} L_{t}\right)^{-1} .
\end{aligned}
$$

For $r=0$ and $q=(1-\sqrt{2}) /(1+\sqrt{2})$, we obtain a Pell and Pell-Lucas consequence of Corollary 6:

$$
\begin{aligned}
U_{d, n} & =2^{d-1}\left\langle\begin{array}{c}
2 d+k-2 \\
d-1
\end{array}\right\rangle_{Q}^{-1}\left\langle\begin{array}{c}
d+n+k-1 \\
n
\end{array}\right\rangle_{Q}^{-1}\left\langle\begin{array}{c}
2 d+k-2 \\
d-1
\end{array}\right\rangle_{Q} \\
& \times\left\{\begin{array}{c}
d+k-2 \\
k-1
\end{array}\right\}_{P}\left\{\begin{array}{c}
n-1 \\
d-1
\end{array}\right\}_{P}\left(\prod_{t=1}^{d-1} P_{t}\right)^{2}\left(\prod_{t=1}^{2 d+k-2} Q_{t}\right)^{-1} .
\end{aligned}
$$

We could also determine the inverses of the matrices L and U :
Theorem 3. For $1 \leq d \leq n$ we have

$$
\begin{aligned}
L_{n, d}^{-1} & =\mathbf{i}^{-\lambda k(n-d)}(-1)^{n-d} q^{\frac{\lambda(n-d)(n-d+k-1)}{2}} \\
& \times\left[\begin{array}{c}
2 n+k-2 \\
n
\end{array}\right]_{\left(-q^{\lambda+r} ; q^{\lambda}\right)}^{-1}\left[\begin{array}{c}
n+d+k-2 \\
d
\end{array}\right]_{\left(-q^{\lambda+r} ; q^{\lambda}\right)}\left[\begin{array}{l}
n-1 \\
d-1
\end{array}\right]_{\left(q^{\lambda} ; q^{\lambda}\right)} .
\end{aligned}
$$

Its generalized Fibonacci-Lucas corollary:
Corollary 7. For $1 \leq d \leq n$

$$
\begin{aligned}
& L_{n, d}^{-1}=\mathbf{i}^{\lambda\left(d^{2}+d-1-n\right)}(-1)^{n-d-\lambda n d} \\
& \times\left\langle\begin{array}{c}
2 n+k-2 \\
n
\end{array}\right\rangle_{V(\lambda+r, \lambda)}^{-1}\left\langle\begin{array}{c}
n+d+k-2 \\
d
\end{array}\right\rangle_{V(\lambda+r, \lambda)}\left\{\begin{array}{l}
n-1 \\
d-1
\end{array}\right\}_{U(\lambda, \lambda)} .
\end{aligned}
$$

As a consequence of Theorem 3 for $\lambda=1$, we have
Corollary 8. For $1 \leq d \leq n$

$$
\begin{aligned}
& L_{n, d}^{-1}=\mathbf{i}^{-(k+2)(n-d)} q^{\frac{(n-d)(n-d+k-1)}{2}} \\
& \times\left[\begin{array}{c}
n+d+r+k-2 \\
d+r
\end{array}\right]_{(-q ; q)}\left[\begin{array}{c}
2 n+r+k-2 \\
n+r
\end{array}\right]_{(-q ; q)}^{-1}\left[\begin{array}{c}
n-1 \\
d-1
\end{array}\right]_{(q ; q)} .
\end{aligned}
$$

Its generalized Fibonacci-Lucas corollary:
Corollary 9. For $1 \leq d \leq n$

$$
L_{n, d}^{-1}=\mathbf{i}^{d(d+1)-n-1}(-1)^{d(n+1)-n}
$$

$$
\times\left\langle\begin{array}{c}
n+d+r+k-2 \\
d+r
\end{array}\right\rangle_{V}\left\langle\begin{array}{c}
2 n+r+k-2 \\
n+r
\end{array}\right\rangle_{V}^{-1}\left\{\begin{array}{l}
n-1 \\
d-1
\end{array}\right\}_{U} .
$$

Thus we have the following example: for $\lambda=1, r=-2$ and $q=(1-\sqrt{5}) /(1+\sqrt{5})$,

$$
L_{i, j}^{-1}=\mathbf{i}^{j(j+1)-i-1}(-1)^{i j+j-i}\left\langle\begin{array}{c}
i+j+k \\
j+2
\end{array}\right\rangle_{L}\left\langle\begin{array}{c}
2 i+k \\
i+2
\end{array}\right\rangle_{L}^{-1}\left\{\begin{array}{l}
i-1 \\
j-1
\end{array}\right\}_{F} .
$$

Theorem 4. For $1 \leq d \leq n$ we have

$$
\begin{aligned}
U_{d, n}^{-1}=\mathbf{i}^{\lambda k(d+n+r)+\lambda\binom{k}{2}(-1)^{d-1} q^{\frac{-\lambda(n-d+k-1)(n+d)}{2}-\lambda d n-r n-\frac{\lambda k(k-1)}{4}-\frac{r k}{2}+r}} \begin{aligned}
& \times\left[\begin{array}{c}
n+d+k-2 \\
d-1
\end{array}\right]_{\left(-q^{\lambda+r} ; q^{\lambda}\right)}\left[\begin{array}{c}
n-1 \\
d-1
\end{array}\right]_{\left(q^{\lambda} ; q^{\lambda}\right)}\left[\begin{array}{c}
n+k-2 \\
k-1
\end{array}\right]_{\left(q^{\lambda} ; q^{\lambda}\right)}^{-1} \\
& \times \frac{\left(-q^{\lambda+r} ; q^{\lambda}\right) 2 n+k-1}{\left(1+q^{\lambda d+r}\right)} \frac{1}{\left(q^{\lambda} ; q^{\lambda}\right)_{n-1}^{2}} .
\end{aligned}
\end{aligned}
$$

And its generalized Fibonacci-Lucas corollary:
Corollary 10. For $1 \leq d \leq n$

$$
\begin{aligned}
& U_{d, n}^{-1}=(-1)^{r(1-n)+(1+d)-d n \lambda} \mathbf{i}^{(d-1+(1-n) n+k r) \lambda-k r}(\alpha-\beta)^{-2(n-1)} \\
& \times \times\left(\begin{array}{c}
n+d+k-2 \\
d-1
\end{array}\right\rangle_{V(\lambda+r, \lambda)}\left\{\begin{array}{c}
n-1 \\
d-1
\end{array}\right\}_{U(\lambda)}\left\{\begin{array}{c}
n+k-2 \\
k-1
\end{array}\right\}_{U(\lambda)}^{-1} \\
& \times\left(\prod_{t=1}^{2 n+k-1} V_{t \lambda+r}\right)\left(\prod_{t=1}^{n-1} U_{t \lambda}\right)^{-2} \overline{1} \overline{V_{\lambda d+r}} .
\end{aligned}
$$

For $\lambda=1$, as a consequence of Theorem 4, we have
Corollary 11. For $1 \leq d \leq n$

$$
\begin{aligned}
& U_{d, n}^{-1}=\mathbf{i}^{k(d+n+r)+\binom{k}{2}}(-1)^{d-1} q q^{\frac{-(n-d+k-1)(n+d)}{2}-d n-r n-\frac{k(k-1)}{4}-\frac{r k}{2}+r} \\
& \times\left[\begin{array}{c}
2 n+r+k-1 \\
n
\end{array}\right]_{(-q ; q)}\left[\begin{array}{c}
2 n+k-2 \\
n
\end{array}\right]_{(-q ; q)}^{-1}\left[\begin{array}{c}
d+n+r+k-2 \\
d+r
\end{array}\right]_{(-q ; q)} \\
& \times\left[\begin{array}{c}
n-1 \\
d-1
\end{array}\right]_{(q ; q)}\left[\begin{array}{c}
n+k-2 \\
k-1
\end{array}\right]_{(q ; q)}^{-1} \frac{(-q ; q)_{2 n+k-2}}{(q ; q)_{n-1}^{2}} .
\end{aligned}
$$

And its generalized Fibonacci-Lucas corollary:
Corollary 12. For $1 \leq d \leq n$

$$
\begin{aligned}
U_{d, n}^{-1}=(-1)^{d-1-d n+r-n r} \mathbf{i}^{d-n(n-1)-1} & (\alpha-\beta)^{-2(n-1)} \\
\times\left\langle\begin{array}{c}
2 n+r+k-1 \\
n
\end{array}\right\rangle_{V} & \left\{\begin{array}{c}
2 n+k-2 \\
n
\end{array}\right\rangle_{V}^{-1}\left\langle\begin{array}{c}
d+n+r+k-2 \\
d+r
\end{array}\right\rangle_{V} \\
\times & \times\left\{\begin{array}{c}
n-1 \\
d-1
\end{array}\right\}_{U}\left\{\begin{array}{c}
n+k-2 \\
k-1
\end{array}\right\}_{U}^{-1}\left(\prod_{t=1}^{n-1} U_{t}\right)^{-2}\left(\prod_{t=1}^{2 n+k-2} V_{t}\right) .
\end{aligned}
$$

Especially for $\lambda=r=1$ and $q=(1-\sqrt{5}) /(1+\sqrt{5})$,
$U_{d, n}^{-1}=(-1)^{d-d n-n} \mathbf{i}^{d-n(n-1)-1} 5^{1-n}$

$$
\begin{aligned}
& \times\left\langle\begin{array}{c}
2 n+k \\
n
\end{array}\right\rangle_{L}\left\langle\begin{array}{c}
2 n+k-2 \\
n
\end{array}\right\rangle_{L}^{-1}\left\langle\begin{array}{c}
d+n+k-1 \\
d+1
\end{array}\right\rangle_{L} \\
& \times\left\{\begin{array}{c}
n-1 \\
d-1
\end{array}\right\}_{F}\left\{\begin{array}{c}
n+k-2 \\
k-1
\end{array}\right\}_{F}^{-1}\left(\prod_{t=1}^{n-1} F_{t}\right)^{-2}\left(\prod_{t=1}^{2 n+k-2} L_{t}\right)
\end{aligned}
$$

As a consequence, we can compute the determinant of \mathcal{T}_{n}, since it is simply evaluated as $U_{1,1} \cdots U_{n, n}$:

Theorem 5.

$$
\begin{aligned}
& \operatorname{det} \mathcal{T}_{n}=\mathbf{i}^{-\frac{\lambda k^{2}}{2}+\frac{\lambda k}{2}-k r+n(n+3)-k \lambda n(n+1)} \\
& \qquad \begin{array}{l}
\times q^{\frac{\lambda n(n+1)(2 n+1)}{6}+\frac{\lambda k(k-1)}{4}-r+\frac{r k}{2}+\frac{1}{2} n(n+1)(\lambda k-\lambda+r)} \frac{\left(q^{\lambda} ; q^{\lambda}\right)_{d-1}^{2}}{\left(-q^{\lambda+r} ; q^{\lambda}\right)_{2 d+k-2}} \\
\\
\times \prod_{d=1}^{n}\left[\begin{array}{c}
2 d+k-1 \\
d
\end{array}\right]_{\left(-q^{\lambda+r} ; q^{\lambda}\right)}^{-1}\left[\begin{array}{c}
d+k-2 \\
k-1
\end{array}\right]_{\left(q^{\lambda} ; q^{\lambda}\right)} .
\end{array} . .
\end{aligned}
$$

Its generalized Fibonacci and Lucas corollary

$$
\begin{aligned}
& \operatorname{det} \mathcal{T}_{n}=\mathbf{i}^{(1-\lambda+r) n(n+3)}(\alpha-\beta)^{\frac{n(n-1)}{2}}\left(\prod_{t=1}^{2 d+k-2} V_{t \lambda+r}\right)^{-1}\left(\prod_{t=1}^{d-1} U_{t \lambda}\right)^{2} \\
& \times \prod_{d=1}^{n}\left\langle\begin{array}{c}
2 d+k-1 \\
d
\end{array}\right\rangle_{V(\lambda+r, \lambda)}^{-1}\left\{\begin{array}{c}
d+k-2 \\
k-1
\end{array}\right\}_{U(\lambda)}
\end{aligned}
$$

For $q=(1-\sqrt{5}) /(1+\sqrt{5}), \lambda=1$ and $r=0$, we easily see that

$$
\begin{aligned}
\operatorname{det} \mathcal{T}_{n} & =5^{\frac{n(n-1)}{2}} \prod_{d=1}^{n}\left\langle\begin{array}{c}
2 d+k-2 \\
d-1
\end{array}\right\rangle_{L}^{-1}\left\langle\begin{array}{c}
2 d+k-1 \\
d
\end{array}\right\rangle_{L}^{-1} \\
& \times\left\langle\begin{array}{c}
2 d+k-2 \\
d-1
\end{array}\right\rangle_{L}\left\{\begin{array}{c}
d+k-2 \\
k-1
\end{array}\right\}_{F}\left(\prod_{t=1}^{d-1} F_{t}\right)^{2}\left(\prod_{t=1}^{2 d+k-2} L_{t}\right)^{-1}
\end{aligned}
$$

Now we compute the inverse of the matrix \mathcal{T}. This time it depends on the dimension, so we compute $\left(\mathcal{T}_{n}\right)^{-1}$.

Theorem 6. For $1 \leq i, j \leq n$:

$$
\begin{aligned}
\left(\left(\mathcal{T}_{n}\right)^{-1}\right)_{i, k} & =\mathbf{i}^{\lambda\binom{k}{2}+\lambda k(i+r)+\lambda k j}(-1)^{i-1-j} q^{-\frac{\lambda k(k-1+2 j)}{4}-\frac{r k}{2}+r-\frac{\lambda(i(k-1)+1)}{2}+\frac{\lambda j(1+j)}{2}} \\
& \times \frac{1}{\left(-q^{\lambda+r} ; q^{\lambda}\right)_{i}\left(-q^{\lambda+r} ; q^{\lambda}\right)_{k-1}\left(-q^{\lambda+r} ; q^{\lambda}\right)_{j}\left(q^{\lambda} ; q^{\lambda}\right)_{j-1}\left(q^{\lambda} ; q^{\lambda}\right)_{i-1}} \\
& \times \sum_{\max \{i, j\} \leq h \leq n}(-1)^{h} q^{-\frac{1}{2} h \lambda(j+2 i)-r h} \frac{\left(-q^{\lambda+r} ; q^{\lambda}\right)_{h+i+k-2}\left(-q^{\lambda+r} ; q^{\lambda}\right)_{h+j+k-2}}{\left(q^{\lambda} ; q^{\lambda}\right)_{h-i}\left(q^{\lambda} ; q^{\lambda}\right)_{h-j}}
\end{aligned}
$$

$$
\times \frac{\left(1+q^{\lambda(2 h+k-1)+r}\right)\left(1+q^{\lambda h+r}\right)}{\left(1+q^{\lambda(h+k-1)+r}\right)} .
$$

Finally, we provide the Cholesky decomposition.
Theorem 7. For $i, j \geq 1$:

$$
\begin{aligned}
& \mathcal{C}_{i, j}=\mathbf{i}^{-\frac{r k}{2}-\frac{\lambda k(k-1)}{4}+\lambda k i+j-1} q^{\frac{\lambda i k}{2}+\frac{\lambda j(j-1)}{2}+\frac{\lambda k(k-1)}{8}-\frac{r}{2}+\frac{r j}{2}+\frac{r k}{4}} \\
& \times\left[\begin{array}{c}
i+j+k-1 \\
i
\end{array}\right]_{\left(-q^{\lambda+r} ; q^{\lambda}\right)}^{-1}\left[\begin{array}{c}
i-1 \\
j-1
\end{array}\right]_{\left(q^{\lambda} ; q^{\lambda}\right)}\left(q^{\lambda} ; q^{\lambda}\right)_{j-1} \\
& \times \sqrt{\left[\begin{array}{c}
2 j+k-1 \\
j
\end{array}\right]_{\left(-q^{\lambda+r} ; q^{\lambda}\right)} \frac{1}{\left(-q^{\lambda+r} ; q^{\lambda}\right)_{2 j+k-2}}\left[\begin{array}{c}
j+k-2 \\
k-1
\end{array}\right]_{\left(q^{\lambda} ; q^{\lambda}\right)}}
\end{aligned}
$$

Its generalized Fibonacci-Lucas Corollary:
Corollary 13. For $i, j \geq 1$:

$$
\begin{aligned}
& \mathcal{C}_{i, j}=\mathbf{i}^{(j-1)(r+j \lambda+1)}(-1)^{i k \lambda}(\alpha-\beta)^{j-1} \\
& \times\left\langle\begin{array}{c}
i+j+k-1 \\
i
\end{array}\right\rangle_{V(\lambda+r, \lambda)}^{-1}\left\{\begin{array}{c}
i-1 \\
j-1
\end{array}\right\}_{U(\lambda)}\left(\prod_{t=1}^{j-1} U_{t \lambda}\right) \\
& \times \sqrt{\left\langle\begin{array}{c}
2 j+k-1 \\
j
\end{array}\right\rangle_{V(\lambda+r, \lambda)}\left(\prod_{t=1}^{2 j+k-2} V_{t \lambda+r}\right)^{-1}\left\{\begin{array}{c}
j+k-2 \\
k-1
\end{array}\right\}_{U(\lambda)}}
\end{aligned}
$$

2. Proofs

We will get relavent quantites related with the LU-decomposition by our usual guessing strategy. As already mentioned, we will evaluate the relevant sums with the q-Zeilberger algorithm, in particular the version that was developed at the RISC in Linz [5].

First, we show that $\sum_{j} L_{m, j} U_{j, n}$ is indeed the matrix \mathcal{T}. We compute

$$
\begin{aligned}
\sum_{j} L_{m, j} U_{j, n} & =\sum_{j} \mathbf{i}^{\lambda k(j-m)} q^{\frac{\lambda k(m-j)}{2}} \frac{\left(-q^{\lambda+r} ; q^{\lambda}\right)_{2 j+k-1}\left(-q^{\lambda+r} ; q^{\lambda}\right)_{m}}{\left(-q^{\lambda+r} ; q\right)_{j}\left(-q^{\lambda+r} ; q^{\lambda}\right)_{m+j+k-1}} \frac{\left(q^{\lambda} ; q^{\lambda}\right)_{m-1}}{\left(q^{\lambda} ; q^{\lambda}\right)_{j-1}\left(q^{\lambda} ; q^{\lambda}\right)_{m-j}} \\
& \times(-1)^{j-1} \mathbf{i}^{-\lambda k(j+n)-\frac{\lambda k^{2}}{2}+\frac{\lambda k}{2}-k r} q^{\frac{\lambda k(j+n)}{2}+\frac{\lambda k(k-1)}{4}-\lambda j+\lambda j^{2}+r(j-1)+\frac{r k}{2}} \\
& \times \frac{\left(-q^{\lambda+r} ; q^{\lambda}\right)_{n}\left(-q^{\lambda+r} ; q^{\lambda}\right)_{j+k-1}}{\left(-q^{\lambda+r} ; q^{\lambda}\right)_{2 j+k-2}\left(-q^{\lambda+r} ; q^{\lambda}\right)_{j+n+k-1}} \frac{\left(q^{\lambda} ; q^{\lambda}\right)_{j+k-2}\left(q^{\lambda} ; q^{\lambda}\right)_{n-1}}{\left(q^{\lambda} ; q^{\lambda}\right)_{n-j}\left(q^{\lambda} ; q^{\lambda}\right)_{k-1}} .
\end{aligned}
$$

We only keep terms that do contain the summation index j :

$$
\begin{aligned}
& \sum_{j}(-1)^{j} q^{-\lambda j+\lambda j^{2}+r j} \frac{\left(-q^{\lambda+r} ; q^{\lambda}\right)_{2 j+k-1}}{\left(-q^{\lambda+r} ; q^{\lambda}\right)_{j}\left(-q^{\lambda+r} ; q^{\lambda}\right)_{m+j+k-1}\left(q^{\lambda} ; q^{\lambda}\right)_{j-1}\left(q^{\lambda} ; q^{\lambda}\right)_{m-j}} \\
& \times \frac{\left(-q^{\lambda+r} ; q^{\lambda}\right)_{j+k-1}}{\left(-q^{\lambda+r} ; q^{\lambda}\right)_{2 j+k-2}\left(-q^{\lambda+r} ; q^{\lambda}\right)_{j+n+k-1}} \frac{\left(q^{\lambda} ; q^{\lambda}\right)_{j+k-2}}{\left(q^{\lambda} ; q^{\lambda}\right)_{n-j}} .
\end{aligned}
$$

We set $q^{\lambda}=Q$ and $r=s \lambda$ and pull out an irrelevant factor:

$$
\begin{aligned}
& \sum_{j}(-1)^{j} Q^{-j+j^{2}+s j} \frac{\left(-Q^{s} ; Q\right)_{2 j+k}}{\left(-Q^{s} ; Q\right)_{j+1}\left(-Q^{s} ; Q\right)_{m+j+k}} \\
& \times \frac{\left(-Q^{s} ; Q\right)_{j+k}}{\left(-Q^{s} ; Q\right)_{2 j+k-1}\left(-Q^{s} ; Q\right)_{j+n+k}} \frac{(Q ; Q)_{j+k-2}}{(Q ; Q)_{n-j}(Q ; Q)_{j-1}(Q ; Q)_{m-j}} .
\end{aligned}
$$

If we consider the sum as a function of m, computer algebra produces for $m \geq 2$ the recursion

$$
\operatorname{SUM}_{m}=\frac{1+Q^{m+n+s-1}}{\left(1-Q^{m-1}\right)\left(1+Q^{m+s}\right)\left(1+Q^{k+m+n+s-1}\right)} \text { SUM }_{m-1}
$$

Since

$$
\mathrm{SUM}_{1}=-Q^{s} \frac{(Q ; Q)_{k-1}}{\left(-Q^{s} ; Q\right)_{2}\left(-Q^{s} ; Q\right)_{1+n+k}(Q ; Q)_{n-1}}
$$

we get a product representation for SUM_{m}, and together with the irrelevant factors that we dropped on the way, the terms from the matrix \mathcal{T}.

Now we look at the inverse matrices:

$$
\begin{aligned}
& \sum_{n \leq j \leq m} L_{m, j} L_{j, n}^{-1} \\
& =\sum_{n \leq j \leq m} \mathbf{i}^{\lambda k(j-m)} q^{\frac{\lambda k(m-j)}{2}} \frac{\left(-q^{\lambda+r} ; q^{\lambda}\right)_{2 j+k-1}\left(-q^{\lambda+r} ; q^{\lambda}\right)_{m}}{\left(-q^{\lambda+r} ; q\right)_{j}\left(-q^{\lambda+r} ; q^{\lambda}\right)_{m+j+k-1}} \frac{\left(q^{\lambda} ; q^{\lambda}\right)_{m-1}}{\left(q^{\lambda} q^{\lambda}\right)_{j-1}\left(q^{\lambda} ; q^{\lambda}\right)_{m-j}} \\
& \times \mathbf{i}^{-\lambda k(j-n)}(-1)^{j-n} q^{\frac{\lambda(j-n)(j-n+k-1)}{2}} \frac{\left(-q^{\lambda+r} ; q^{\lambda}\right)_{j+n-2+k}\left(-q^{\lambda+r} ; q^{\lambda}\right)_{j}}{\left(-q^{\lambda+r} ; q^{\lambda}\right)_{2 j+k-2}\left(-q^{\lambda+r} ; q^{r}\right)_{n}} \frac{\left(q^{\lambda} ; q^{\lambda}\right)_{j-1}}{\left(q^{\lambda} ; q^{\lambda}\right)_{n-1}\left(q^{\lambda} ; q^{\lambda}\right)_{j-n}} .
\end{aligned}
$$

Again, we drop all the terms that do not depend on j :

$$
\sum_{n \leq j \leq m}(-1)^{j} q^{\lambda\binom{j}{2}-\lambda j n} \frac{\left(-q^{\lambda+r} ; q^{\lambda}\right)_{2 j+k-1}\left(-q^{\lambda+r} ; q^{\lambda}\right)_{j+n+k-2}}{\left(-q^{\lambda+r} ; q^{\lambda}\right)_{m+j+k-1}\left(-q^{\lambda+r} ; q^{\lambda}\right)_{2 j+k-2}} \frac{1}{\left(q^{\lambda} ; q^{\lambda}\right)_{m-j}\left(q^{\lambda} ; q^{\lambda}\right)_{j-n}} .
$$

After the substitutions,

$$
\sum_{n \leq j \leq m}(-1)^{j} Q^{\left(\frac{j}{2}\right)-j n} \frac{(-Q ; Q)_{2 j+k+s-1}(-Q ; Q)_{j+n+k+s-2}}{(-Q ; Q)_{m+j+k+s-1}(-Q ; Q)_{2 j+k+s-2}} \frac{1}{(Q ; Q)_{m-j}(Q ; Q)_{j-n}}
$$

Computer algebra tells us that this is 0 , for $m \neq n$, as required. The value 1 for $m=n$ can be computed by hand.

Now we consider the other inverse matrix:

$$
\begin{aligned}
& \sum_{m \leq j \leq n} U_{m, j} U_{j, n}^{-1} \\
& =\sum_{m \leq j \leq n}(-1)^{m-1} \mathbf{i}^{-\lambda k(m+j)-\frac{\lambda k^{2}}{2}+\frac{\lambda k}{2}-k r} q^{\frac{\lambda k(m+j)}{2}+\frac{\lambda k(k-1)}{4}-\lambda m+\lambda m^{2}+r(m-1)+\frac{r k}{2}} \\
& \times \frac{\left(-q^{\lambda+r} ; q^{\lambda}\right)_{j}\left(-q^{\lambda+r} ; q^{\lambda}\right)_{m+k-1}}{\left(-q^{\lambda+r} ; q^{\lambda}\right)_{2 m+k-2}\left(-q^{\lambda+r} ; q^{\lambda}\right)_{m+j+k-1}} \frac{\left(q^{\lambda} ; q^{\lambda}\right)_{m+k-2}\left(q^{\lambda} ; q^{\lambda}\right)_{j-1}}{\left(q^{\lambda} ; q^{\lambda}\right)_{j-m}\left(q^{\lambda} ; q^{\lambda}\right)_{k-1}}
\end{aligned}
$$

$$
\begin{aligned}
& \times \mathbf{i}^{\lambda k(j+n+r)+\lambda\binom{k}{2}(-1)^{j-1} q^{\frac{-\lambda(n-j+k-1)(n+j)}{2}}-\lambda j n-r n-\frac{\lambda k(k-1)}{4}-\frac{r k}{2}+r} \\
& \times \frac{\left(-q^{\lambda+r} ; q^{\lambda}\right)_{2 n+k-1}\left(-q^{\lambda+r} ; q^{\lambda}\right)_{n+j+k-2}}{\left(-q^{\lambda+r} ; q^{\lambda}\right)_{j}\left(-q^{\lambda+r} ; q^{\lambda}\right)_{n+k-1}} \frac{\left(q^{\lambda} ; q^{\lambda}\right)_{k-1}}{\left(q^{\lambda} ; q^{\lambda}\right)_{j-1}\left(q^{\lambda} ; q^{\lambda}\right)_{n-j}\left(q^{\lambda} ; q^{\lambda}\right)_{n+k-2}} .
\end{aligned}
$$

Again, we only keep factors that depend on j :

$$
\sum_{m \leq j \leq n}(-1)^{j} q^{\lambda\binom{j+1}{2}-\lambda j n} \frac{\left(-q^{\lambda+r} ; q^{\lambda}\right)_{n+j+k-2}}{\left(-q^{\lambda+r} ; q^{\lambda}\right)_{m+j+k-1}} \frac{1}{\left(q^{\lambda} ; q^{\lambda}\right)_{n-j}\left(q^{\lambda} ; q^{\lambda}\right)_{j-m}}
$$

After substitutions,

$$
\sum_{m \leq j \leq n}(-1)^{j} Q^{\binom{j+1}{2}-j n} \frac{(-Q ; Q)_{n+j+k+s-2}}{(-Q ; Q)_{m+j+k+s-1}} \frac{1}{(Q ; Q)_{n-j}(Q ; Q)_{j-m}}
$$

and computer algebra evaluates this again to 0 for $m \neq 0$.
Finally, for the Cholesky decomposition, we need to consider

$$
\begin{aligned}
& \quad \sum_{1 \leq j \leq \min \{i, l\}} \mathcal{C}_{i, j} \mathcal{C}_{l, j}=\sum_{1 \leq j \leq \min \{i, l\}} q^{\frac{\lambda i k}{2}+\frac{\lambda j(j-1)}{2}+\frac{\lambda k(k-1)}{8}-\frac{r}{2}+\frac{r j}{2}+\frac{r k}{4}} \mathbf{i}^{\frac{r k}{2}-\frac{\lambda k(k-1)}{4}+\lambda k i+j-1} \\
& \times \frac{\left(-q^{\lambda+r} ; q^{\lambda}\right)_{i}}{\left(-q^{\lambda+r} ; q^{\lambda}\right)_{i+j+k-1}} \frac{\left(q^{\lambda} ; q^{\lambda}\right)_{i-1}}{\left(q^{\lambda} ; q^{\lambda}\right)_{i-j}} \\
& \times \frac{\left(1+q^{r+\lambda(2 j+k-1)}\right)\left(-q^{\lambda+r} ; q^{\lambda}\right)_{j+k-1}}{\left(-q^{\lambda+r} ; q^{\lambda}\right)_{j}} \frac{\left(q^{\lambda} ; q^{\lambda}\right)_{j+k-2}}{\left(q^{\lambda} ; q^{\lambda}\right)_{k-1}\left(q^{\lambda} ; q^{\lambda}\right)_{j-1}} \\
& \times q^{\frac{\lambda l k}{2}+\frac{\lambda j(j-1)}{2}+\frac{\lambda k(k-1)}{8}-\frac{r}{2}+\frac{r j}{2}+\frac{r k}{4} \mathbf{i}^{-\frac{r k}{2}-\frac{\lambda k(k-1)}{4}+\lambda k l+j-1}} \\
& \times \frac{\left(-q^{\lambda+r} ; q^{\lambda}\right)_{l}}{\left(-q^{\lambda+r} ; q^{\lambda}\right)_{l+j+k-1}} \frac{\left(q^{\lambda} ; q^{\lambda}\right)_{l-1}}{\left(q^{\lambda} ; q^{\lambda}\right)_{l-j}} .
\end{aligned}
$$

The terms that depend on j :

$$
\begin{aligned}
& \sum_{1 \leq j \leq \min \{i, l\}}(-1)^{j} q^{\lambda j(j-1)+r j} \\
& \times \frac{\left(1+q^{r+\lambda(2 j+k-1)}\right)\left(-q^{\lambda+r} ; q^{\lambda}\right)_{j+k-1}}{\left(-q^{\lambda+r} ; q^{\lambda}\right)_{j}\left(-q^{\lambda+r} ; q^{\lambda}\right)_{i+j+k-1}\left(-q^{\lambda+r} ; q^{\lambda}\right)_{l+j+k-1}} \frac{\left(q^{\lambda} ; q^{\lambda} ; q^{\lambda}\right)_{i-j}\left(q^{\lambda} ; q^{\lambda}\right)_{j-1}\left(q^{\lambda} ; q^{\lambda}\right)_{l-j}}{} .
\end{aligned}
$$

After the substitutions,

$$
\begin{aligned}
& \sum_{1 \leq j \leq \min \{i, l\}}(-1)^{j} Q^{j(j-1)+s j} \\
& \times \frac{\left(1+Q^{s+2 j+k-1}\right)(-Q ; Q)_{j+k+s-1}}{(-Q ; Q)_{j+s}(-Q ; Q)_{i+j+k+s-1}(-Q ; Q)_{l+j+k+s-1}} \frac{(Q ; Q)_{j+k-2}}{(Q ; Q)_{i-j}(Q ; Q)_{j-1}(Q ; Q)_{l-j}} .
\end{aligned}
$$

Computer algebra produces the recursion (for $i \geq 2$)

$$
\operatorname{SUM}_{i}=\frac{1+Q^{i+l+s-1}}{\left(1-Q^{i-1}\right)\left(1+Q^{i+s}\right)\left(1+Q^{i+k+l+s-1}\right)} \text { SUM }_{i-1} .
$$

The initial value is easily found:

$$
\operatorname{SUM}_{1}=-\frac{Q^{s}}{(-Q ; Q)_{1+s}(-Q ; Q)_{l+k+s}} \frac{(Q ; Q)_{k-1}}{(Q ; Q)_{l-1}}
$$

Iteration gives the product form for SUM_{i}, and together with the dropped factors we get the correct terms $t_{i, l}$ of the matrix \mathcal{T}.

References

[1] E. Kılıç and H. Prodinger, A generalized Filbert matrix, The Fibonacci Quart. 48.1 (2010), 29-33.
[2] E. Kilıç and H. Prodinger, The q-Pilbert matrix, Int. J. Comput. Math. 89 (10) (2012), 1370-1377.
[3] E. Kilhç and H. Prodinger, Asymmetric generalizations of the Filbert matrix and variants, Publ. Inst. Math. (Beograd) (N.S.) 95(109) (2014), 267-280.
[4] E. Kiliç and H. Prodinger, The generalized q-Pilbert matrix, Mathematica Slovaca 64 (5) (2014), 1083-1092.
[5] P. Paule and A. Riese, A Mathematica q-analogue of Zeilberger's algorithm based on an algebraically motivated approach to q-hypergeometric telescoping, in Special Functions, q-Series and Related Topics, Fields Inst. Commun. 14 (1997), 179-210.
[6] H. Prodinger, A generalization of a Filbert matrix with 3 additional parameters, Trans. Roy. Soc. South Africa 65 (2010), 169-172.
[7] T. Richardson, The Filbert matrix, The Fibonacci Quart. 39 (3) (2001), 268-275.
tOBB University of Economics and Technology Mathematics Department 06560 Ankara Turkey

E-mail address: ekilic@etu.edu.tr
Department of Mathematics, University of Stellenbosch 7602 Stellenbosch South Africa
E-mail address: hproding@sun.ac.za

[^0]: 2000 Mathematics Subject Classification. 11B39, 15B05, 15A23.
 Key words and phrases. Lilbert matrix, Filbert matrix, Pilbert matrix, Fibonacci numbers, q-analogues, LU-decomposition, Cholesky decomposition, Zeilberger's algorithm.

