SOME GAUSSIAN BINOMIAL SUM FORMULÆ WITH APPLICATIONS

EMRAH KILIÇ AND HELMUT PRODINGER

Abstract

We introduce and compute some Gaussian q-binomial sums formulæ. In order to prove these sums, our approach is to use q-analysis, in particular a formula of Rothe, and computer algebra. We present some applications of our results.

1. Introduction

Let $\left\{U_{n}\right\}$ and $\left\{V_{n}\right\}$ be generalized Fibonacci and Lucas sequences, respectively, whose the Binet forms are

$$
U_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}=\alpha^{n-1} \frac{1-q^{n}}{1-q} \quad \text { and } \quad V_{n}=\alpha^{n}+\beta^{n}=\alpha^{n}\left(1+q^{n}\right)
$$

with $q=\beta / \alpha=-\alpha^{-2}$, so that $\alpha=\mathbf{i} / \sqrt{q}$.
When $\alpha=\frac{1+\sqrt{5}}{2}$ (or equivalently $q=(1-\sqrt{5}) /(1+\sqrt{5})$), the sequence $\left\{U_{n}\right\}$ is reduced to the Fibonacci sequence $\left\{F_{n}\right\}$ and the sequence $\left\{V_{n}\right\}$ is reduced to the Lucas sequence $\left\{L_{n}\right\}$.

When $\alpha=1+\sqrt{2}$ (or equivalently $q=(1-\sqrt{2}) /(1+\sqrt{2})$), the sequence $\left\{U_{n}\right\}$ is reduced to the Pell sequence $\left\{P_{n}\right\}$ and the sequence $\left\{V_{n}\right\}$ is reduced to the Pell-Lucas sequence $\left\{Q_{n}\right\}$.

Throughout this paper we will use the following notations: the q-Pochhammer $\operatorname{symbol}(x ; q)_{n}=(1-x)(1-x q) \ldots\left(1-x q^{n-1}\right)$ and the Gaussian q-binomial coefficients

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{z}=\frac{\left(q^{z} ; q^{z}\right)_{n}}{\left(q^{z} ; q^{z}\right)_{k}\left(q^{z} ; q^{z}\right)_{n-k}}
$$

The $z=1$ case will be denoted by $\left[\begin{array}{l}n \\ k\end{array}\right]$.
Furthermore, we will use generalized Fibonomial coefficients

$$
\left\{\begin{array}{l}
n \\
k
\end{array}\right\}_{U, t}=\frac{U_{n t} U_{(n-1) t} \ldots U_{(n-k+1) t}}{U_{t} U_{2 t} \ldots U_{k t}}
$$

with $\left\{\begin{array}{l}n \\ 0\end{array}\right\}_{U, t}=1$ where U_{n} is the nth generalized Fibonacci number.
In the special case $t=1$, the generalized Fibonomial coefficients are denoted by $\left\{\begin{array}{l}n \\ k\end{array}\right\}_{U}$. When $U_{n}=F_{n}$, the generalized Fibonomial reduces to the Fibonomial coefficients denoted by $\left\{\begin{array}{l}n \\ k\end{array}\right\}_{F}$:

$$
\left\{\begin{array}{l}
n \\
k
\end{array}\right\}_{F}=\frac{F_{n} F_{n-1} \ldots F_{n-k+1}}{F_{1} F_{2} \ldots F_{k}} .
$$

[^0]Similarly, when $U_{n}=P_{n}$, the generalized Fibonomial reduces to the Pellnomial coefficients denoted by $\left\{\begin{array}{l}n \\ k\end{array}\right\}_{P}$:

$$
\left\{\begin{array}{l}
n \\
k
\end{array}\right\}_{P}=\frac{P_{n} P_{n-1} \ldots P_{n-k+1}}{P_{1} P_{2} \ldots P_{k}}
$$

The link between the generalized Fibonomial and Gaussian q-binomial coefficients is

$$
\left\{\begin{array}{l}
n \\
k
\end{array}\right\}_{U, t}=\alpha^{t k(n-k)}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{t} \quad \text { with } \quad q=-\alpha^{-2}
$$

For the reader's convenience and later use, we recall Rothe's formula [1, 10.2.2(c)]:

$$
\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right](-1)^{k} q^{\binom{k}{2}} x^{k}=(x ; q)_{n}
$$

We can refer to $[2,3,4,5,6,7,8]$ for various sums of Gaussian q-binomial coefficients and sums of generalized Fibonomial sums with certain weight functions. Recently, the authors of $[8,7]$ computed certain Fibonomial sums with generalized Fibonacci and Lucas numbers as coefficients. For example, if n and m are both nonnegative integers, then

$$
\begin{aligned}
& \sum_{k=0}^{2 n}\left\{\begin{array}{c}
2 n \\
k
\end{array}\right\} U_{(2 m-1) k}=P_{n, m} \sum_{k=1}^{m}\left\{\begin{array}{c}
2 m-1 \\
2 k-1
\end{array}\right\} U_{(4 k-2) n} \\
& \sum_{k=0}^{2 n+1}\left\{\begin{array}{c}
2 n+1 \\
k
\end{array}\right\} U_{2 m k}=P_{n, m} \sum_{k=0}^{m}\left\{\begin{array}{c}
2 m \\
2 k
\end{array}\right\} U_{(2 n+1) 2 k} \\
& \sum_{k=0}^{2 n}\left\{\begin{array}{c}
2 n \\
k
\end{array}\right\} V_{(2 m-1) k}=P_{n, m} \sum_{k=1}^{m}\left\{\begin{array}{c}
2 m-1 \\
2 k-1
\end{array}\right\} V_{(4 k-2) n} \\
& \sum_{k=0}^{2 n+1}\left\{\begin{array}{c}
2 n+1 \\
k
\end{array}\right\} V_{2 m k}=P_{n, m} \sum_{k=0}^{m}\left\{\begin{array}{c}
2 m \\
2 k
\end{array}\right\} V_{(2 n+1) 2 k}
\end{aligned}
$$

where

$$
P_{n, m}= \begin{cases}\prod_{k=0}^{n-m} V_{2 k} & \text { if } n \geq m \\ m-n-1 \\ \prod_{k=1}^{-1} V_{2 k}^{-1} & \text { if } n<m\end{cases}
$$

alternating analogues of these sums were also evaluated.
Recently Kılıç and Prodinger [3] computed the following Gaussian q-binomial sums with a parametric rational weight function: For any positive integer w, any nonzero real number a, nonnegative integer n, integers t and r such that $t+n \geq 0$ and $r \geq-1$,

$$
\begin{aligned}
& \sum_{j=0}^{n}\left[\begin{array}{c}
n \\
j
\end{array}\right]_{q} \frac{(-1)^{j} q^{\binom{j+1}{2}+j t}}{\left(a q^{j} ; q^{w}\right)_{r+1}} \\
& =a^{-t}(q ; q)_{n}\left(\sum_{j=0}^{r} \frac{(-1)^{j}}{\left(q^{w} ; q^{w}\right)_{j}\left(q^{w} ; q^{w}\right)_{r-j}} \frac{q^{w\binom{j+1}{2}-t w j}}{\left(a q^{w j} ; q\right)_{n+1}}\right.
\end{aligned}
$$

$$
\left.+(-1)^{r+1} \sum_{j=0}^{t-r-1}\left[\begin{array}{c}
n+j \\
n
\end{array}\right]_{q}\left[\begin{array}{c}
t-1-j \\
r
\end{array}\right]_{q^{w}} q^{w\binom{r+1}{2}+(j-t) r w} a^{j}\right) .
$$

In this paper we derive some Gaussian q-binomial sums. Then we present some applications of our results.

2. The Main Results

We start with our first result:
Theorem 1. For any $n \geq 1$,

$$
\sum_{k=1}^{n}\left[\begin{array}{c}
2 n \\
n+k
\end{array}\right] q^{\frac{1}{2} k(k-1)}\left(1-q^{k}\right)=\left(1-q^{n}\right)\left[\begin{array}{c}
2 n-1 \\
n
\end{array}\right]
$$

and its Fibonomial corollary:

$$
\sum_{k=1}^{n}\left\{\begin{array}{c}
2 n \\
n+k
\end{array}\right\}_{U, t}(-1)^{\binom{k}{2}} U_{t k}=U_{t n}\left\{\begin{array}{c}
2 n-1 \\
n
\end{array}\right\}_{U, t}
$$

Proof. Let

$$
S=\sum_{k=-n}^{n}\left[\begin{array}{c}
2 n \\
n+k
\end{array}\right] q^{\frac{1}{2} k(k-1)}\left(1-q^{k}\right)
$$

Thus

$$
\begin{aligned}
S & =\sum_{k=-n}^{n}\left[\begin{array}{c}
2 n \\
n+k
\end{array}\right] q^{\frac{1}{2} k(k+1)}\left(1-q^{-k}\right) \\
& =\sum_{k=-n}^{n}\left[\begin{array}{c}
2 n \\
n+k
\end{array}\right] q^{\frac{1}{2} k(k-1)}\left(q^{k}-1\right)=-S
\end{aligned}
$$

so $S=0$. Let

$$
F(n, m)=\sum_{k=-n}^{m}\left[\begin{array}{c}
2 n \\
n+k
\end{array}\right] q^{\frac{1}{2} k(k-1)}\left(1-q^{k}\right) .
$$

We need $-F(n, 0)$ to evaluate our sum. Define

$$
G(n, m):=-\left(1-q^{n}\right)\left[\begin{array}{c}
2 n-1 \\
n+m
\end{array}\right] q^{m(m+1) / 2}
$$

Then we have

$$
G(n, m)=F(n, m)
$$

which follows from

$$
G(n, m)-G(n, m-1)=\left[\begin{array}{c}
2 n \\
n+m
\end{array}\right] q^{\frac{1}{2} m(m-1)}\left(1-q^{n}\right)
$$

Therefore our answer is

$$
-F(n, 0)=-G(n, 0)=\left(1-q^{n}\right)\left[\begin{array}{c}
2 n-1 \\
n
\end{array}\right]
$$

as claimed.
The Fibonacci corollary follows by first replacing q by q^{t} and then translating.

For example, when $t=1$ and $\alpha=1+\sqrt{2}$ (or equivalently $q=\frac{1-\sqrt{2}}{1+\sqrt{2}}$), we have the following Pellnomial-Pell sum identity:

$$
\sum_{k=1}^{n}\left\{\begin{array}{c}
2 n \\
n+k
\end{array}\right\}_{P}(-1)^{\binom{k}{2}} P_{k}=P_{n}\left\{\begin{array}{c}
2 n-1 \\
n
\end{array}\right\}_{P}
$$

When $t=3$ and $\alpha=\frac{1+\sqrt{5}}{2}$ (or equivalently $q=\frac{1-\sqrt{5}}{1+\sqrt{5}}$), then we have the following Fibonomial-Fibonacci sum identity:

$$
\sum_{k=1}^{n}\left\{\begin{array}{c}
2 n \\
n+k
\end{array}\right\}_{F, 3}(-1)^{\binom{k}{2}} F_{3 k}=F_{3 n}\left\{\begin{array}{c}
2 n-1 \\
n
\end{array}\right\}_{F, 3}
$$

Our second result is:
Theorem 2. For all n such that $2 n-1 \geq r$ we have

$$
\sum_{k=1}^{n}\left[\begin{array}{c}
2 n \\
n+k
\end{array}\right](-1)^{k} q^{\frac{1}{2}\left(k^{2}-k(2 r+1)\right)}\left(1+q^{k}\right)^{2 r+1}=-2^{2 r}\left[\begin{array}{c}
2 n \\
n
\end{array}\right]
$$

and its generalized Fibonomial-Lucas corollary:

$$
\sum_{k=1}^{n}\left\{\begin{array}{c}
2 n \\
n+k
\end{array}\right\}_{U, t}(-1)^{\frac{k\left(k+(-1)^{r}\right)}{2}} V_{k t}^{2 r+1}=-4^{r}\left\{\begin{array}{c}
2 n \\
n
\end{array}\right\}_{U, t}
$$

Proof. Define

$$
S:=\sum_{k=1}^{n}\left[\begin{array}{c}
2 n \\
n+k
\end{array}\right](-1)^{k} q^{\frac{1}{2} k(k-(2 r+1))}\left(1+q^{k}\right)^{2 r+1} .
$$

Then we write

$$
2 S=\sum_{k \neq 0}\left[\begin{array}{c}
2 n \\
n+k
\end{array}\right](-1)^{k} q^{\frac{1}{2} k(k-(2 r+1))}\left(1+q^{k}\right)^{2 r+1}
$$

and so

$$
2 S+2^{2 r+1}\left[\begin{array}{c}
2 n \\
n
\end{array}\right]=\sum_{k=-n}^{n}\left[\begin{array}{c}
2 n \\
n+k
\end{array}\right](-1)^{k} q^{\frac{1}{2} k(k-(2 r+1))}\left(1+q^{k}\right)^{2 r+1}
$$

Consider

$$
\begin{aligned}
& \sum_{k=-n}^{n}\left[\begin{array}{c}
2 n \\
n+k
\end{array}\right](-1)^{k} q^{\frac{1}{2} k(k-(2 r+1))} z^{k} \\
& =\sum_{k=0}^{2 n}\left[\begin{array}{c}
2 n \\
k
\end{array}\right](-1)^{k-n} q^{\frac{1}{2}(k-n)(k-n-(2 r+1))} z^{k-n} \\
& =(-1)^{n} z^{-n} q^{\frac{n^{2}+n(2 r+1)}{2}} \sum_{k=0}^{2 n}\left[\begin{array}{c}
2 n \\
k
\end{array}\right](-1)^{k} q^{\binom{k}{2}}\left(z q^{-n-r}\right)^{k} \\
& =(-1)^{n} z^{-n} q^{\binom{n+1}{2}+n r}\left(z q^{-n-r} ; q\right)_{2 n},
\end{aligned}
$$

according to formula $10.2 .2(\mathrm{c})$ (Rothe's formula) in [1]. In order to obtain our claimed sum S, we use this formula for $z=1, q, q^{2}, \ldots, q^{2 r+1}$. Hence they are all 0
provided that $r \leq 2 n-1$. Therefore

$$
\sum_{k=1}^{n}\left[\begin{array}{c}
2 n \\
n+k
\end{array}\right](-1)^{k} q^{\frac{1}{2} k(k-(2 r+1))}\left(1+q^{k}\right)^{2 r+1}=-2^{2 r}\left[\begin{array}{c}
2 n \\
n
\end{array}\right]
$$

as claimed.
We can now replace q by q^{t} to obtain some Fibonomial type corollaries.
As an example, when $t=3, r=2$ and $\alpha=\frac{1+\sqrt{5}}{2}$ (or equivalently $q=\frac{1-\sqrt{5}}{1+\sqrt{5}}$), then we have the following Fibonomial-Lucas sum identity:

$$
\sum_{k=1}^{n}\left\{\begin{array}{c}
2 n \\
n+k
\end{array}\right\}_{F, 3}(-1)^{(k+1}{ }_{2}^{(1)} L_{3 t}^{5}=-16\left\{\begin{array}{c}
2 n \\
n
\end{array}\right\}_{F, 3}
$$

Our third result is a list of formulæ that can be obtained automatically by using the q-Zeilberger algorithm, in particular the version that was developed at the Risc center in Linz [9].

Theorem 3. For $n \geq 1$
$\sum_{k=0}^{n}\left[\begin{array}{c}2 n \\ n+k\end{array}\right] q^{\frac{1}{2} k(k-(2 b+1))}\left(1-q^{(2 b+1) k}\right)=\frac{X_{b}}{q^{\binom{b+1}{2}} \prod_{j=1}^{b}\left(1+q^{n-j}\right)}\left(1-q^{n}\right)\left[\begin{array}{c}2 n-1 \\ n\end{array}\right]$,
and the polynomials X_{b} are getting more and more involved.
We give a list of the first few:

$$
\begin{aligned}
X_{0}= & 1 \\
X_{1}= & 2+q+q^{n}+2 q^{n+1}, \\
X_{2}= & 2+2 q+q^{3}+2 q^{n}+q^{2 n}+3 q^{n+1}+3 q^{n+2}+2 q^{n+3}+2 q^{2 n+2}+2 q^{2 n+3}, \\
X_{3}= & 2+2 q+2 q^{3}+q^{6} \\
+ & 2 q^{n}+2 q^{2 n}+q^{3 n}+4 q^{1+n}+4 q^{2+n}+5 q^{3+n}+3 q^{4+n}+q^{5+n}+2 q^{6+n} \\
& +q^{1+2 n}+3 q^{2+2 n}+5 q^{3+2 n}+4 q^{4+2 n}+4 q^{5+2 n}+2 q^{6+2 n} \\
+ & 2 q^{3+3 n}+2 q^{5+3 n}+2 q^{6+3 n}, \\
X_{4}= & 2+2 q+2 q^{3}+2 q^{6}+q^{10} \\
+ & 2 q^{n}+2 q^{2 n}+2 q^{3 n}+q^{4 n}+4 q^{1+n}+4 q^{2+n}+6 q^{3+n}+6 q^{4+n}+4 q^{5+n} \\
& +3 q^{6+n}+3 q^{7+n}+q^{8+n}+q^{9+n}+2 q^{10+n} \\
+ & 2 q^{1+2 n}+4 q^{2+2 n}+7 q^{3+2 n}+7 q^{4+2 n}+10 q^{5+2 n}+7 q^{6+2 n}+7 q^{7+2 n} \\
& +4 q^{8+2 n}+2 q^{9+2 n}+2 q^{10+2 n} \\
+ & q^{1+3 n}+q^{2+3 n}+3 q^{3+3 n}+3 q^{4+3 n}+4 q^{5+3 n}+6 q^{6+3 n}+6 q^{7+3 n} \\
& +4 q^{8+3 n}+4 q^{9+3 n}+2 q^{10+3 n} \\
+ & 2 q^{4+4 n}+2 q^{7+4 n}+2 q^{9+4 n}+2 q^{10+4 n} .
\end{aligned}
$$

As an example, we state the general Fibonomial-Lucas-Fibonacci instance for $b=1$:

$$
\sum_{k=0}^{n}\left\{\begin{array}{c}
2 n \\
n+k
\end{array}\right\}_{U, t}(-1)^{\frac{1}{2} t k(k-3)} U_{3 k t}=\frac{\left(2 V_{t(n+1)}+(-1)^{t} V_{t(n-1)}\right) U_{n t}}{(-1)^{t} V_{(n-1) t}}\left\{\begin{array}{c}
2 n-1 \\
n
\end{array}\right\}_{U, t}
$$

For example, when $\alpha=(1+\sqrt{5}) / 2$ (or equivalently $q=\frac{1-\sqrt{5}}{1+\sqrt{5}}$) and $t=1$, then we have the following Fibonomial-Lucas-Fibonacci sum identity:

$$
\sum_{k=0}^{n}\left\{\begin{array}{c}
2 n \\
n+k
\end{array}\right\}_{F}(-1)^{\frac{1}{2} k(k-3)} F_{3 k}=-\frac{L_{n+2} F_{n}}{L_{n-1}}\left\{\begin{array}{c}
2 n-1 \\
n
\end{array}\right\}_{F}
$$

We give another Fibonomial-Lucas-Fibonacci corollary (the instance $b=2$); more complicated ones can be obtained by replacing q by q^{t} and taking larger b 's.

$$
\left.\begin{array}{rl}
\sum_{k=0}^{n}\left\{\begin{array}{c}
2 n \\
n+k
\end{array}\right\}_{U}(-1)^{\binom{k}{2}} U_{5 k}
\end{array}\right] \begin{aligned}
& =\left(2 V_{2 n+1}+V_{2 n-3}-2 V_{2 n+3}+3(-1)^{n} V_{1}-2(-1)^{n} V_{3}\right) \\
& \times \frac{U_{n}}{V_{n-1} V_{n-2}}\left\{\begin{array}{c}
2 n-1 \\
n
\end{array}\right\}_{U}
\end{aligned}
$$

Note that $2 V_{2 n+1}+V_{2 n-3}-2 V_{2 n+3}$ could still simplified a bit using the recursion, but the recursion depends on α.

For example, when $\alpha=(1+\sqrt{5}) / 2$

$$
\sum_{k=0}^{n}\left\{\begin{array}{c}
2 n \\
n+k
\end{array}\right\}_{F}(-1)^{\binom{k}{2}} F_{5 k}=\frac{F_{n}\left(L_{2 n+1}-4 L_{2 n}-5(-1)^{n}\right)}{L_{n-1} L_{n-2}}\left\{\begin{array}{c}
2 n-1 \\
n
\end{array}\right\}_{F}
$$

Now we state our next result:
Theorem 4. For $n \geq 1$

$$
\sum_{k=0}^{n}\left[\begin{array}{c}
2 n \\
n+k
\end{array}\right] q^{\frac{1}{2} k(k-3)}\left(1-q^{k}\right)^{3}=2\left[\begin{array}{c}
2 n-3 \\
n-1
\end{array}\right] \frac{(1-q)}{q}\left(1-q^{n}\right)\left(1-q^{2 n-1}\right)
$$

and its Fibonomial-Fibonacci corollary

$$
\sum_{k=0}^{n}\left\{\begin{array}{c}
2 n \\
n+k
\end{array}\right\}_{U, t}(-1)^{\frac{1}{2} t k(k-3)} U_{t k}^{3}=(-1)^{t} 2 U_{t} U_{t n} U_{t(2 n-1)}\left\{\begin{array}{c}
2 n-3 \\
n-1
\end{array}\right\}_{U, t}
$$

Proof. One can produce a proof similar to our first theorem, but we gain no insight from it; and a computer can prove it without any effort.

For example, if we take $t=5$ and $\alpha=\frac{1+\sqrt{5}}{2}$ (or equivalently $q=\frac{1-\sqrt{5}}{1+\sqrt{5}}$), then we have the following Fibonomial-Fibonacci sum identity :

$$
\sum_{k=0}^{n}\left\{\begin{array}{c}
2 n \\
n+k
\end{array}\right\}_{F, 5}(-1)^{\frac{1}{2} k(k-3)} F_{5 k}^{3}=-2\left\{\begin{array}{c}
2 n-3 \\
n-1
\end{array}\right\}_{F, 5} F_{5} F_{5 n} F_{5(2 n-1)}
$$

Now we state our next results including the $5^{\text {th }}$ and $7^{\text {th }}$ powers of $\left(1-q^{k}\right)$:
Theorem 5. For $n \geq 1$
$\sum_{k=0}^{n}\left[\begin{array}{c}2 n \\ n+k\end{array}\right] q^{\frac{1}{2} k(k-5)}\left(1-q^{k}\right)^{5}=\frac{2(1-q)^{2}\left(1-q^{n}\right)^{2}\left(1+3 q-3 q^{n}-q^{n+1}\right)}{q^{3}\left(1+q^{n-1}\right)\left(1+q^{n-2}\right)}\left[\begin{array}{c}2 n-1 \\ n\end{array}\right]$,
and its Fibonomial-Fibonacci corollary

$$
\sum_{k=0}^{n}\left\{\begin{array}{c}
2 n \\
n+k
\end{array}\right\}_{U, t}(-1)^{t\binom{k}{2}} U_{t k}^{5}=\frac{(-1)^{t} 2 U_{t}^{2} U_{t n}^{2}\left(U_{t(n+1)}+3(-1)^{t} U_{t(n-1)}\right)}{V_{t(n-1)} V_{t(n-2)}}\left\{\begin{array}{c}
2 n-1 \\
n
\end{array}\right\}_{U, t}
$$

Proof. Again, this is best done by a computer.
For example, when $t=1$ and $\alpha=(1+\sqrt{5}) / 2$, we get the following FibonomialFibonacci corollary:

$$
\sum_{k=0}^{n}\left\{\begin{array}{c}
2 n \\
n+k
\end{array}\right\}_{F}(-1)^{\binom{k}{2}} F_{k}^{5}=\frac{2 F_{n}^{2} F_{n-3}}{L_{n-1} L_{n-2}}\left\{\begin{array}{c}
2 n-1 \\
n
\end{array}\right\}_{F}
$$

We also give the next instance; after that, the terms get too involved:
Theorem 6. For $n \geq 1$

$$
\begin{gathered}
\sum_{k=0}^{n}\left[\begin{array}{c}
2 n \\
n+k
\end{array}\right] q^{\frac{1}{2} k(k-7)}\left(1-q^{k}\right)^{7}=\frac{2(1-q)^{3}\left(1-q^{n}\right)^{2}}{q^{6}\left(1+q^{n-1}\right)\left(1+q^{n-2}\right)\left(1+q^{n-3}\right)}\left[\begin{array}{c}
2 n-1 \\
n
\end{array}\right] \\
\times\left(1+4 q+9 q^{2}+10 q^{3}+10 q^{2 n}+9 q^{2 n+1}+4 q^{2 n+2}\right. \\
\left.+q^{2 n+3}-5 q^{n}-19 q^{n+1}-19 q^{n+2}-5 q^{n+3}\right)
\end{gathered}
$$

and its Fibonomial-Fibonacci-Lucas corollary

$$
\begin{aligned}
\sum_{k=0}^{n}\left\{\begin{array}{c}
2 n \\
n+k
\end{array}\right\}_{U} & (-1)^{\frac{1}{2} k(k-7)} U_{k}^{7} \\
& =\left(V_{2 n+3}-4 V_{2 n+1}+9 V_{2 n-1}-10 V_{2 n-3}-5(-1)^{n} V_{3}+19(-1)^{n} V_{1}\right) \\
& \times \frac{2 U_{1}^{3} U_{n}^{2}}{5 V_{n-1} V_{n-2} V_{n-3}}\left\{\begin{array}{c}
2 n-1 \\
n
\end{array}\right\}_{U}
\end{aligned}
$$

For example, when $\alpha=(1+\sqrt{5}) / 2$, we get

$$
\sum_{k=0}^{n}\left\{\begin{array}{c}
2 n \\
n+k
\end{array}\right\}_{F}(-1)^{\frac{1}{2} k(k-7)} F_{k}^{7}=\frac{2 F_{n}^{2}\left(L_{2 n-2}+4 L_{2 n-4}-(-1)^{n}\right)}{5 L_{n-1} L_{n-2} L_{n-3}}\left\{\begin{array}{c}
2 n-1 \\
n
\end{array}\right\}_{F}
$$

References

[1] G. E. Andrews, R. Askey, and R.Roy, Special functions, Cambridge University Press, 2000.
[2] E. Kılıç, A proof of a conjecture of Marques and Trojovsky, Miskolc Math. Notes, 2(2) (2014), 545-557.
[3] E. Kılıç and H. Prodinger, Evaluation of sums involving Gaussian q-binomial coefficients with rational weight functions, Int. J. Number Theory, DOI: 10.1142/S1793042116500305
[4] E. Kılıç and H. Prodinger, Closed form evaluation of sums containing squares of Fibonomial coefficients, accepted in Math. Slovaca.
[5] E. Kılıç and H. Prodinger, Formulae related to the q-Dixon formula with applications to Fibonomial sums, Periodica Mathematica Hungarica 70 (2015), 216-226.
[6] E. Kılıç, I. Akkus and H. Prodinger, A generalization of a conjecture of Melham, Utilitas Math., 93 (2014), 225-232.
[7] E. Kılıç, İ. Akkus and H. Ohtsuka, Some generalized Fibonomial sums related with the Gaussian q-binomial sums, Bull. Math. Soc. Sci. Math.Roumanie, 55 (103) No. 1 (2012), 51-61.
[8] E. Kılıç, H. Prodinger, I. Akkuş and H. Ohtsuka, Formulas for Fibonomial sums with generalized Fibonacci and Lucas coefficients, The Fibonacci Quarterly, 49 (4) (2011), 320-329.
[9] P. Paule, and A. Riese, A Mathematica q-analogue of Zeilberger's algorithm based on an algebraically motivated approach to q-hypergeometric telescoping, in special functions, q-series and related topics, Fields Inst. Commun. 14 (1997), 179-210.

TOBB University of Economics and Technology Mathematics Department 06560 Ankara Turkey

E-mail address: ekilic@etu.edu.tr
Department of Mathematics, University of Stellenbosch 7602 Stellenbosch South Africa

E-mail address: hproding@sun.ac.za

[^0]: 2000 Mathematics Subject Classification. 11B39.
 Key words and phrases. Gaussian Binomial Coefficients, Fibonacci numbers, q-analogues, Sum formulæ, CAS.

