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Abstract. We introduce and compute some Gaussian q-binomial sums for-

mulæ. In order to prove these sums, our approach is to use q-analysis, in
particular a formula of Rothe, and computer algebra. We present some appli-

cations of our results.

1. Introduction

Let {Un} and {Vn} be generalized Fibonacci and Lucas sequences, respectively,
whose the Binet forms are

Un =
αn − βn

α− β
= αn−1 1− qn

1− q
and Vn = αn + βn = αn (1 + qn)

with q = β/α = −α−2, so that α = i/
√
q.

When α = 1+
√

5
2 (or equivalently q = (1−

√
5 )/(1 +

√
5 ) ), the sequence {Un} is

reduced to the Fibonacci sequence {Fn} and the sequence {Vn} is reduced to the
Lucas sequence {Ln}.

When α = 1 +
√

2 (or equivalently q = (1 −
√

2 )/(1 +
√

2 ) ), the sequence
{Un} is reduced to the Pell sequence {Pn} and the sequence {Vn} is reduced to the
Pell-Lucas sequence {Qn}.

Throughout this paper we will use the following notations: the q-Pochhammer
symbol (x; q)n = (1− x)(1− xq) . . . (1− xqn−1) and the Gaussian q-binomial coef-
ficients [

n

k

]
z

=
(qz; qz)n

(qz; qz)k(qz; qz)n−k
.

The z = 1 case will be denoted by

[
n

k

]
.

Furthermore, we will use generalized Fibonomial coefficients{
n

k

}
U,t

=
UntU(n−1)t . . . U(n−k+1)t

UtU2t . . . Ukt

with
{
n
0

}
U,t

= 1 where Un is the nth generalized Fibonacci number.

In the special case t = 1, the generalized Fibonomial coefficients are denoted
by
{
n
k

}
U

. When Un = Fn, the generalized Fibonomial reduces to the Fibonomial

coefficients denoted by
{
n
k

}
F

:{
n

k

}
F

=
FnFn−1 . . . Fn−k+1

F1F2 . . . Fk
.
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Similarly, when Un = Pn, the generalized Fibonomial reduces to the Pellnomial
coefficients denoted by

{
n
k

}
P

:{
n

k

}
P

=
PnPn−1 . . . Pn−k+1

P1P2 . . . Pk
.

The link between the generalized Fibonomial and Gaussian q-binomial coeffi-
cients is {

n

k

}
U,t

= αtk(n−k)

[
n

k

]
t

with q = −α−2.

For the reader’s convenience and later use, we recall Rothe’s formula [1, 10.2.2(c)]:

n∑
k=0

[
n

k

]
(−1)

k
q(

k
2)xk = (x; q)n .

We can refer to [2, 3, 4, 5, 6, 7, 8] for various sums of Gaussian q-binomial
coefficients and sums of generalized Fibonomial sums with certain weight functions.
Recently, the authors of [8, 7] computed certain Fibonomial sums with generalized
Fibonacci and Lucas numbers as coefficients. For example, if n and m are both
nonnegative integers, then

2n∑
k=0

{
2n

k

}
U(2m−1)k = Pn,m

m∑
k=1

{
2m− 1

2k − 1

}
U(4k−2)n,

2n+1∑
k=0

{
2n+ 1

k

}
U2mk = Pn,m

m∑
k=0

{
2m

2k

}
U(2n+1)2k,

2n∑
k=0

{
2n

k

}
V(2m−1)k = Pn,m

m∑
k=1

{
2m− 1

2k − 1

}
V(4k−2)n,

2n+1∑
k=0

{
2n+ 1

k

}
V2mk = Pn,m

m∑
k=0

{
2m

2k

}
V(2n+1)2k,

where

Pn,m =


n−m∏
k=0

V2k if n ≥ m,
m−n−1∏
k=1

V −1
2k if n < m;

alternating analogues of these sums were also evaluated.
Recently Kılıç and Prodinger [3] computed the following Gaussian q-binomial

sums with a parametric rational weight function: For any positive integer w, any
nonzero real number a, nonnegative integer n, integers t and r such that t+ n ≥ 0
and r ≥ −1,

n∑
j=0

[
n

j

]
q

(−1)jq(
j+1
2 )+jt

(aqj ; qw)r+1

= a−t(q; q)n

( r∑
j=0

(−1)j

(qw; qw)j (qw; qw)r−j

qw(j+1
2 )−twj

(aqwj ; q)n+1
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+ (−1)r+1
t−r−1∑
j=0

[
n+ j

n

]
q

[
t− 1− j

r

]
qw
qw(r+1

2 )+(j−t)rwaj
)
.

In this paper we derive some Gaussian q-binomial sums. Then we present some
applications of our results.

2. The Main Results

We start with our first result:

Theorem 1. For any n ≥ 1,
n∑

k=1

[
2n

n+ k

]
q

1
2k(k−1)

(
1− qk

)
= (1− qn)

[
2n− 1

n

]
and its Fibonomial corollary:

n∑
k=1

{
2n

n+ k

}
U,t

(−1)(
k
2) Utk = Utn

{
2n− 1

n

}
U,t

.

Proof. Let

S =

n∑
k=−n

[
2n

n+ k

]
q

1
2k(k−1)

(
1− qk

)
.

Thus

S =

n∑
k=−n

[
2n

n+ k

]
q

1
2k(k+1)

(
1− q−k

)
=

n∑
k=−n

[
2n

n+ k

]
q

1
2k(k−1)

(
qk − 1

)
= −S,

so S = 0. Let

F (n,m) =

m∑
k=−n

[
2n

n+ k

]
q

1
2k(k−1)

(
1− qk

)
.

We need −F (n, 0) to evaluate our sum. Define

G (n,m) := −(1− qn)

[
2n− 1

n+m

]
qm(m+1)/2.

Then we have

G (n,m) = F (n,m),

which follows from

G(n,m)−G(n,m− 1) =

[
2n

n+m

]
q

1
2m(m−1) (1− qn) .

Therefore our answer is

−F (n, 0) = −G(n, 0) = (1− qn)

[
2n− 1

n

]
,

as claimed.
The Fibonacci corollary follows by first replacing q by qt and then translating.

�
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For example, when t = 1 and α = 1 +
√

2 (or equivalently q = 1−
√

2
1+
√

2
), we have

the following Pellnomial-Pell sum identity:

n∑
k=1

{
2n

n+ k

}
P

(−1)(
k
2) Pk = Pn

{
2n− 1

n

}
P

.

When t = 3 and α = 1+
√

5
2 (or equivalently q = 1−

√
5

1+
√

5
), then we have the following

Fibonomial-Fibonacci sum identity:

n∑
k=1

{
2n

n+ k

}
F,3

(−1)(
k
2) F3k = F3n

{
2n− 1

n

}
F,3

.

Our second result is:

Theorem 2. For all n such that 2n− 1 ≥ r we have

n∑
k=1

[
2n

n+ k

]
(−1)

k
q

1
2 (k2−k(2r+1)) (1 + qk

)2r+1
= −22r

[
2n

n

]
,

and its generalized Fibonomial-Lucas corollary:

n∑
k=1

{
2n

n+ k

}
U,t

(−1)
k(k+(−1)r)

2 V 2r+1
kt = −4r

{
2n

n

}
U,t

.

Proof. Define

S :=

n∑
k=1

[
2n

n+ k

]
(−1)

k
q

1
2k(k−(2r+1))

(
1 + qk

)2r+1
.

Then we write

2S =
∑
k 6=0

[
2n

n+ k

]
(−1)

k
q

1
2k(k−(2r+1))

(
1 + qk

)2r+1

and so

2S + 22r+1

[
2n

n

]
=

n∑
k=−n

[
2n

n+ k

]
(−1)

k
q

1
2k(k−(2r+1))

(
1 + qk

)2r+1
.

Consider
n∑

k=−n

[
2n

n+ k

]
(−1)

k
q

1
2k(k−(2r+1))zk

=

2n∑
k=0

[
2n

k

]
(−1)

k−n
q

1
2 (k−n)(k−n−(2r+1))zk−n

= (−1)nz−nq
n2+n(2r+1)

2

2n∑
k=0

[
2n

k

]
(−1)

k
q(

k
2)(zq−n−r)k

= (−1)nz−nq(
n+1
2 )+nr(zq−n−r; q)2n,

according to formula 10.2.2(c) (Rothe’s formula) in [1]. In order to obtain our
claimed sum S, we use this formula for z = 1, q, q2, . . . , q2r+1. Hence they are all 0
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provided that r ≤ 2n− 1. Therefore
n∑

k=1

[
2n

n+ k

]
(−1)

k
q

1
2k(k−(2r+1))

(
1 + qk

)2r+1
= −22r

[
2n

n

]
,

as claimed. �

We can now replace q by qt to obtain some Fibonomial type corollaries.

As an example, when t = 3, r = 2 and α = 1+
√

5
2 (or equivalently q = 1−

√
5

1+
√

5
),

then we have the following Fibonomial-Lucas sum identity:
n∑

k=1

{
2n

n+ k

}
F,3

(−1)(
k+1
2 )L5

3t = −16

{
2n

n

}
F,3

.

Our third result is a list of formulæ that can be obtained automatically by using
the q-Zeilberger algorithm, in particular the version that was developed at the Risc
center in Linz [9].

Theorem 3. For n ≥ 1
n∑

k=0

[
2n

n+ k

]
q

1
2k(k−(2b+1))

(
1− q(2b+1)k

)
=

Xb

q(
b+1
2 )∏b

j=1(1 + qn−j)
(1− qn)

[
2n− 1

n

]
,

and the polynomials Xb are getting more and more involved.

We give a list of the first few:

X0 = 1,

X1 = 2 + q + qn + 2qn+1,

X2 = 2 + 2q + q3 + 2qn + q2n + 3qn+1 + 3qn+2 + 2qn+3 + 2q2n+2 + 2q2n+3,

X3 = 2 + 2q + 2q3 + q6

+ 2qn + 2q2n + q3n + 4q1+n + 4q2+n + 5q3+n + 3q4+n + q5+n + 2q6+n

+ q1+2n + 3q2+2n + 5q3+2n + 4q4+2n + 4q5+2n + 2q6+2n

+ 2q3+3n + 2q5+3n + 2q6+3n,

X4 = 2 + 2q + 2q3 + 2q6 + q10

+ 2qn + 2q2n + 2q3n + q4n + 4q1+n + 4q2+n + 6q3+n + 6q4+n + 4q5+n

+ 3q6+n + 3q7+n + q8+n + q9+n + 2q10+n

+ 2q1+2n + 4q2+2n + 7q3+2n + 7q4+2n + 10q5+2n + 7q6+2n + 7q7+2n

+ 4q8+2n + 2q9+2n + 2q10+2n

+ q1+3n + q2+3n + 3q3+3n + 3q4+3n + 4q5+3n + 6q6+3n + 6q7+3n

+ 4q8+3n + 4q9+3n + 2q10+3n

+ 2q4+4n + 2q7+4n + 2q9+4n + 2q10+4n.

As an example, we state the general Fibonomial-Lucas-Fibonacci instance for b = 1:

n∑
k=0

{
2n

n+ k

}
U,t

(−1)
1
2 tk(k−3)U3kt =

(
2Vt(n+1) + (−1)

t
Vt(n−1)

)
Unt

(−1)
t
V(n−1)t

{
2n− 1

n

}
U,t

.
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For example, when α =
(
1 +
√

5
)
/2 (or equivalently q = 1−

√
5

1+
√

5
) and t = 1, then

we have the following Fibonomial-Lucas-Fibonacci sum identity:
n∑

k=0

{
2n

n+ k

}
F

(−1)
1
2k(k−3)F3k = −Ln+2Fn

Ln−1

{
2n− 1

n

}
F

.

We give another Fibonomial-Lucas-Fibonacci corollary (the instance b = 2);
more complicated ones can be obtained by replacing q by qt and taking larger b’s.

n∑
k=0

{
2n

n+ k

}
U

(−1)(
k
2) U5k

= (2V2n+1 + V2n−3 − 2V2n+3 + 3 (−1)
n
V1 − 2 (−1)

n
V3)

× Un

Vn−1Vn−2

{
2n− 1

n

}
U

.

Note that 2V2n+1 +V2n−3−2V2n+3 could still simplified a bit using the recursion,
but the recursion depends on α.

For example, when α =
(
1 +
√

5
)
/2

n∑
k=0

{
2n

n+ k

}
F

(−1)(
k
2) F5k =

Fn (L2n+1 − 4L2n − 5 (−1)
n
)

Ln−1Ln−2

{
2n− 1

n

}
F

.

Now we state our next result:

Theorem 4. For n ≥ 1
n∑

k=0

[
2n

n+ k

]
q

1
2k(k−3)

(
1− qk

)3
= 2

[
2n− 3

n− 1

]
(1− q)
q

(1− qn)
(
1− q2n−1

)
,

and its Fibonomial-Fibonacci corollary
n∑

k=0

{
2n

n+ k

}
U,t

(−1)
1
2 tk(k−3)

U3
tk = (−1)

t
2UtUtnUt(2n−1)

{
2n− 3

n− 1

}
U,t

.

Proof. One can produce a proof similar to our first theorem, but we gain no insight
from it; and a computer can prove it without any effort. �

For example, if we take t = 5 and α = 1+
√

5
2 (or equivalently q = 1−

√
5

1+
√

5
), then

we have the following Fibonomial-Fibonacci sum identity :
n∑

k=0

{
2n

n+ k

}
F,5

(−1)
1
2k(k−3)

F 3
5k = −2

{
2n− 3

n− 1

}
F,5

F5F5nF5(2n−1).

Now we state our next results including the 5th and 7th powers of
(
1− qk

)
:

Theorem 5. For n ≥ 1
n∑

k=0

[
2n

n+ k

]
q

1
2k(k−5)

(
1− qk

)5
=

2(1− q)2(1− qn)2(1 + 3q − 3qn − qn+1)

q3(1 + qn−1)(1 + qn−2)

[
2n− 1

n

]
,

and its Fibonomial-Fibonacci corollary

n∑
k=0

{
2n

n+ k

}
U,t

(−1)
t(k

2) U5
tk =

(−1)
t
2U2

t U
2
tn

(
Ut(n+1) + 3 (−1)

t
Ut(n−1)

)
Vt(n−1)Vt(n−2)

{
2n− 1

n

}
U,t

.
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Proof. Again, this is best done by a computer. �

For example, when t = 1 and α =
(
1 +
√

5
)
/2, we get the following Fibonomial-

Fibonacci corollary:

n∑
k=0

{
2n

n+ k

}
F

(−1)(
k
2) F 5

k =
2F 2

nFn−3

Ln−1Ln−2

{
2n− 1

n

}
F

.

We also give the next instance; after that, the terms get too involved:

Theorem 6. For n ≥ 1

n∑
k=0

[
2n

n+ k

]
q

1
2k(k−7)

(
1− qk

)7
=

2(1− q)3 (1− qn)
2

q6(1 + qn−1)(1 + qn−2)(1 + qn−3)

[
2n− 1

n

]
× (1 + 4q + 9q2 + 10q3 + 10q2n + 9q2n+1 + 4q2n+2

+ q2n+3 − 5qn − 19qn+1 − 19qn+2 − 5qn+3),

and its Fibonomial-Fibonacci-Lucas corollary

n∑
k=0

{
2n

n+ k

}
U

(−1)
1
2k(k−7)

U7
k

=
(
V2n+3 − 4V2n+1 + 9V2n−1 − 10V2n−3 − 5 (−1)

n
V3 + 19 (−1)

n
V1

)
× 2U3

1U
2
n

5Vn−1Vn−2Vn−3

{
2n− 1

n

}
U

.

For example, when α =
(
1 +
√

5
)
/2, we get

n∑
k=0

{
2n

n+ k

}
F

(−1)
1
2k(k−7)

F 7
k =

2F 2
n(L2n−2 + 4L2n−4 − (−1)

n
)

5Ln−1Ln−2Ln−3

{
2n− 1

n

}
F

.
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