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We study equations from the area of peridynamics, which is a nonlocal extension of
elasticity. The governing equations form a system of nonlocal wave equations. We
take a novel approach by applying operator theory methods in a systematic way.
On the unbounded domain Rn, we present three main results. As main result 1,
we find that the governing operator is a bounded function of the governing oper-
ator of classical elasticity. As main result 2, a consequence of main result 1, we
prove that the peridynamic solutions strongly converge to the classical solutions by
utilizing, for the first time, strong resolvent convergence. In addition, main result 1
allows us to incorporate local boundary conditions, in particular, into peridynamics.
This avenue of research is developed in companion papers, providing a remedy
for boundary effects. As main result 3, employing spherical Bessel functions, we
give a new practical series representation of the solution which allows straightfor-
ward numerical treatment with symbolic computation. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4953252]

I. INTRODUCTION AND MOTIVATION

Classical elasticity has been successful in characterizing and measuring the resistance of mate-
rials to crack growth. On the other hand, peridynamics (PD), a nonlocal extension of continuum
mechanics developed by Silling,55 is capable of quantitatively predicting the dynamics of propagat-
ing cracks, including bifurcation. Its effectiveness has been established in sophisticated applications
such as Kalthoff-Winkler experiments of the fracture of a steel plate with notches,31,58 fracture and
failure of composites, nanofiber networks, and polycrystal fracture.34,44,60,59 Further applications are
in the context of multiscale modeling, where PD has been shown to be an upscaling of molecular
dynamics52,54 and has been demonstrated as a viable multiscale material model for length scales
ranging from molecular dynamics to classical elasticity.10 Also see other related engineering applica-
tions,13,33,35,46,45 the review, and news articles14,16,21,57 for a comprehensive discussion, and the book.38

We study a class of nonlocal wave equations. The driving application is PD whose equa-
tion of motion corresponds exactly to the nonlocal wave equation under consideration. The same
operator is also employed in nonlocal diffusion.9,14,51 Similar classes of operators are used in
numerous applications such as population models, particle systems, phase transition, and coagu-
lation. Nonlocal operators have also been used in image processing.27,36 In addition, we witness
a strong interest for PD, its applications, and related nonlocal problems addressing, for instance,
conditioning analysis, domain decomposition, and variational theory,5–7 discretization,1,7,25,62

numerical methods,15,17,50 nonlinear PD,26,37 nonlinearity in nonlocal wave equations,19,20 well-
posedness in various forms,5,6,8,18,22–24,39,40,67 and other aspects.12,28,41,53

It is part of the folklore in physics that the point particle model, which is the root for locality in
physics, is the cause of unphysical singular behavior in the description of the underlying phenom-
ena. This fact is a strong indication that, in the long run, the development of nonlocal theories is
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necessary for description of natural phenomena. Similar set of operator theory tools used for local
problems can be transferred to study nonlocal problems because operator theory does not discern
the locality or nonlocality of the governing operator. This article adds valuable tools to the arsenal
of methods to analyze nonlocal problems.

The equation of interest falls into the class of abstract evolution equations, more precisely,
abstract linear wave equations. Methods from operator theory are ideal to treat such equations. One
can directly gain access to powerful tools such as functional calculus for bounded self-adjoint oper-
ators, spectral theorems (of densely defined, linear, and self-adjoint operators in Hilbert spaces),
and strong resolvent convergence of operators. Well-posedness of the initial value problem, conser-
vation of energy, stability of solutions (merely determined by the spectrum) are all immediately
available; see Theorem 1 and Corollary 2. Furthermore, representation of solutions can easily be
constructed through functional calculus for bounded operators; see our main result 3.

There are many studies6–8,18,24,39,40,56,67 that aim to establish a connection between the nonlocal
operator and the classical one. We denote this nonlocal-to-local connection by N L2L. PD formu-
lation utilizes a distance parameter δ, called the horizon, in order to limit interactions to nearby
points. The source of nonlocality is the horizon and it is embedded in the support of the micromodu-
lus function. Studies turn to the limit of vanishing nonlocality, i.e., δ → 0 when they aim to establish
N L2L. The exact expression of N L2L is lost due to taking limit. We take general micromodulus
functions in L1(Rn), not necessarily parametrized by δ. Without resorting to a δ → 0 argument, we
identify the exact expression of the N L2L connection, what we call as main result 1.

Identifying the N L2L connection leads to a fruitful research direction because it helped us to
extend the construction for unbounded domains to the bounded domain case by using the same
function of the classical operator used in PD. That way, we kept a close proximity to PD in the
bounded domain case. More importantly, N L2L connection turned out to be the notable result
that the governing operator is a bounded function of the classical (local) operator.69 This has far
reaching consequences. It enables the incorporation of local boundary conditions into nonlocal
theories; see the companion papers.2,3 It takes a lot of effort to mitigate the boundary effects. See the
comprehensive discussion [Ref. 38, Chaps. 4, 5, 7, and 12] and the numerical study.32 Incorporation
of local boundary conditions provides a remedy for boundary effects seen in PD.

The rest of the article is structured as follows. We provide mathematical introduction in
Section I. In Section II, we set the operator theory framework to treat the nonlocal wave equation.
We prove basic properties of the solutions such as well-posedness of the initial value problem and
conservation of energy. We provide a representation of the solutions in terms of bounded functions
of the governing operator. We study the stability of solutions. We also consider the class of inho-
mogeneous wave equations and prove well-posedness of the corresponding initial value problem as
well as a representation of the solutions in terms of bounded functions of the governing operator.

In Section III, in the vector-valued case, we note that the governing operator becomes an oper-
ator matrix. The generality of operator theory allows a simple extension of the results established
for the scalar-valued functions to the vector-valued ones. We prove the boundedness of the entries of
the governing operator matrix. The proof is natural due to operator theory again, because it relies on
a well-known criterion for integral operators. We present a “diagonalization” of the matrix entries.
This is accomplished by employing the unitary Fourier transform and connecting the entries to
maximal multiplication operators.

In Section IV, we collect the statements of the three main results:

• Main Result 1: Nonlocal operator is a bounded function of the classical operator.
• Main Result 2: Strong convergence of nonlocal solutions to classical ones through strong

resolvent convergence.
• Main Result 3: Representation of the solution in terms of spherical Bessel functions.

In Section V, we construct two examples to demonstrate the usefulness of main result 3. We
give explicit representation of the solutions in terms of Bessel functions. Since the explicit represen-
tation is available, we easily compute the solutions by symbolic computation, depict the resulting
solutions of PD wave equation, and compare to the classical solutions.
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In Section VI, we collect the proofs of the three main results together with related supporting
material. In particular, in Section VI A, utilizing Fourier transforms, we turn the nonlocal govern-
ing operator into maximal multiplication operator. This process can be viewed as a form of “diag-
onalization.” The spectra of maximal multiplication operators are well understood. In addition, the
functional calculus associated to maximal multiplication operators is known. Spectra and functional
calculus allow the construction of the functional calculi for the governing operator, which in turn is
used to prove that the governing operators with spherically symmetric micromoduli are functions of
the Laplace operator. In Section VI B, we prove strong convergence of nonlocal solutions to clas-
sical ones through the notion of strong resolvent convergence of functions of the classical operator.
Different types of resolvent convergences, i.e., norm, strong, and weak, are available; see Ref. 65 for
comparison. We utilize the notion of strong resolvent convergence in order to obtain strong conver-
gence of solution operators. This allows us to prove main result 3. We give examples of sequences
of micromoduli that are instances of this result. In Section VI C, we consider the calculation of the
solution of the wave equation. Since the governing operator is bounded, holomorphic functions of that
operator can be represented in the form of power series in the operator. Then, we give a representation
of holomorphic functions, present in the solution of the initial value problem, utilizing the fact that the
governing operator is a sum of two commuting operators. We establish main result 3 by discovering
that the corresponding power series can be given in terms of a series of Bessel functions. In addition,
we provide an error estimate for the series representation. We use this estimate in the plots of solutions
of the PD wave equation; see Figures 1 and 2. In Section VI D, we give the explicit representation
of the solutions of inhomogeneous wave equations and prove well-posedness of the corresponding
initial value problem. We conclude in Section VII.

Next, we present the formal system of linear PD wave equations in n-space dimensions
[Ref. 55, Eq. (54)], n ∈ N∗,

ρ
∂2u
∂t2 (x, t) =


Rn

C(x ′ − x) · (u(x ′, t) − u(x, t)) dx ′ + b(x, t).
Here, “·” indicates matrix multiplication, or equivalently by the system

ρ
∂2u j

∂t2 (x, t) =
n

k=1


Rn

Cjk(x ′ − x) · (uk(x ′, t) − uk(x, t)) dx ′ + bj(x, t), (1.1)

where x ∈ Rn, t ∈ R, C : Rn → M(n × n,R) is the micromodulus tensor, assumed to be even and
assuming values inside the subspace of symmetric matrices, ρ > 0 is the mass density, b : Rn ×
R → Rn is the prescribed body force density, and u : Rn × R → Rn is the displacement field.

For comparison, e.g., the corresponding wave equation in classical elasticity in 1-space dimen-
sion is given by

ρ
∂2u
∂t2 = E

∂2u
∂x2 + b, (1.2)

where E > 0 is the so called “Young’s modulus,” and describing compression waves in a rod.
If j, k ∈ {1, . . . ,n} and Cjk ∈ L1(Rn), we can rewrite (1.1) as

ρ
∂2u j

∂t2 (x, t) = −
n

k=1

 
Rn

Cjk(x ′)dx ′


uk(x, t) − (Cjk ∗ uk(·, t))(x)

+ bj(x, t), (1.3)

for all x ∈ Rn, t ∈ R, and j ∈ {1, . . . ,n} where ∗ denotes the convolution product. The system (1.3)
is the starting point for a functional analytic interpretation, which leads on a well-posed initial value
problem. For this purpose, we use methods from operator theory; see, e.g., Refs. 11 and 47.

II. OPERATOR-THEORETIC TREATMENT OF SYSTEMS OF WAVE EQUATIONS

Analogous to the majority of evolution equations from classical and quantum physics, (1.3) can
be treated with methods from operator theory, see, e.g., Refs. 11 and 47 for substantiation of this
claim and Ref. 29 for applications of operator theory in engineering. More specifically, this system
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FIG. 1. Evolution of the local and nonlocal wave equation solutions with vanishing initial velocity ((a) and (b)) and vanishing
initial displacement ((c) and (d)). For (a) and (c), we use ρ = E = 1, b = 0, values in (1.2). For (b) and (d), we use c = a = 1,
ρ = 1, σ = 1, σd = 1/2 values in Example 10. Solutions are generated using symbolic computation. The infinite series in
(5.1) is truncated after adding 46 terms. No difference has been observed visually if more terms are added.

falls into the class of abstract linear wave equations from Theorem 1. For the proof of this theorem
see, e.g., Ref. 11 [Theorem 2.2.1 and Corollary 2.2.2]. Special cases of this theorem are proved
in Refs. 30 and 42 and Ref. 48 [Vol. II]. Statements and proofs make use of the spectral theorems
of (densely defined, linear and) self-adjoint operators in Hilbert spaces, including the concept of
functions of such operators, see, e.g., Ref. 48 [Vol. I], or standard books on functional analysis, such
as Refs. 49 and 66. These methods are also used throughout the paper.

This section provides the basic properties of the solutions of abstract wave equations of the
form (2.1). Theorem 1 gives the well-posedness of the initial value problem for a class of ab-
stract wave equations, conservation of energy, and a representation of the solutions in terms of
bounded functions of the governing operator. Theorem 3 provides special solutions of the associated
class of inhomogeneous wave equations. Together with Theorem 1, these solutions provide the
well-posedness of the initial value problem of the latter equations as well as a representation of the
solutions in terms of bounded functions of the governing operator.
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FIG. 2. Evolution of the local and nonlocal wave equation solutions with discontinuous initial displacement ((a) and (b))
and discontinuous initial velocity ((c) and (d)). For (a) and (c), we use ρ = E = 1, b = 0, values in (1.2). For (b) and (d), we
use c = a = 1, ρ = 1, σ = 1, and b = ϵ = 1 values in Example 11. Solutions are generated using symbolic computation. The
infinite series in (5.2) is truncated after adding 46 terms. No difference has been observed visually if more terms are added.

Theorem 1 (Wave Equations). Let (X,⟨|⟩) be some non-trivial complex Hilbert space. Fur-
thermore, let A : D(A) → X be some densely defined, linear, semibounded self-adjoint operator in
X with spectrum σ(A). Finally, let ξ,η ∈ D(A).

(i) Then there is a unique twice continuously differentiable map u : R → X assuming values in
D(A) and satisfying

u′′(t) = −A u(t) (2.1)

for all t ∈ R as well as

u(0) = ξ, u′(0) = η.
(ii) For this u, the corresponding energy function Eu : R → R, defined by

Eu(t) B 1
2
� ⟨u′(t)|u′(t)⟩ + ⟨u(t)|Au(t)⟩ �

for all t ∈ R, is constant.
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(iii) Moreover, this u is represented by the following solution operators for all t ∈ R:70

u(t) = cos
(
t
√

A
)
ξ +

sin
(
t
√

A
)

√
A

η. (2.2)

Proof. See the proofs of Ref. 11 [Theorem 2.2.1 and Corollary 2.2.2]. �

Moreover, if A is positive, the solutions of (2.1) are stable, i.e., there are no solutions that are
growing exponentially in the norm.

Corollary 2 (Stability of solutions). If A is positive, then for every t ∈ R, we have

∥u(t)∥ 6 ∥ξ∥ + |t | · ∥η∥.

Proof. The proof is obvious. �

Duhamel’s principle leads to a solution of (2.1) for vanishing data, the proof of the well-
posedness and a representation of the solutions of the initial value problem of the inhomogeneous
equation,

u′′(t) = −A u(t) + b(t), t ∈ R.

For simplicity, the corresponding subsequent Theorem 3 assumes that A is in addition positive,
which is the most relevant case for applications because otherwise there are exponentially growing
solutions, indicating that the system is unstable. The same statement is true if σ(A) is only bounded
from below. On the other hand, Theorem 3 can also be obtained by application of the corresponding
well-known more general theorem for strongly continuous semigroups; see, e.g., Ref. 11 [Theo-
rem 4.6.2]. We give a direct proof of Theorem 3 in Section VI D, which does not rely on methods
from the theory of strongly continuous semigroups. For the definition of weak integration; see, e.g.,
Ref. 11 [Sec. 3.2].

Theorem 3 (Solutions of inhomogeneous wave equations). Let (X,⟨|⟩), A : D(A) → X, σ(A)
be as in Theorem 1 and, in addition, A be positive. Let b : R → X be a continuous map, assuming
values in D(A2) such that Ab, A2 b are continuous. Then, v : R → X, for every t ∈ R defined by

v(t) B

It

sin
((t − τ)√A

)
√

A
b(τ) dτ,

where


denotes weak integration in X,

It B



[0, t] if t > 0
[t,0] if t < 0

,

is twice continuously differentiable, assumes values in D(A), is such that

v ′′(t) + A v(t) = b(t), t ∈ R,
v(0) = v ′(0) = 0.

Proof. See Section VI D. �

III. THE GOVERNING OPERATOR AND PROPERTIES

The standard data space for the classical wave equation is a L2-space with constant weight, on
a non-empty open subset of Rn, n ∈ N∗, for instance, L2

C(R) for a bar of infinite extension in 1-space
dimension. It turns out that the classical data spaces are suitable also as data spaces for peridy-
namics, for instance, again L2

C(R) for a bar of infinite extension in 1-space dimension, composed of
a “linear peridynamic material.” This simplifies the discussion of the convergence of peridynamic
solutions to classical solutions.
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In the following, we represent (1.3) in the form of (2.1), where the governing operator A is
an “operator matrix,” consisting of sums of multiples of the identity and convolution operators,
as indicated in (1.3). These matrix entries will turn out to be pairwise commuting. The following
remark provides some known relevant information on operator matrices of bounded operators. On
the other hand, we avoid explicit matrix notation.

Remark 4 (Operator matrices). If K ∈ {R,C}, (X,⟨|⟩) a non-trivial K-Hilbert space,
(Ajk) j,k ∈{1, ...,n} a family of elements of L(X,X).

(i) Then by

A(ξ1, . . . , ξn) B *
,

n
k=1

A1kξk, . . . ,

n
k=1

Ankξk+
-

for every (ξ1, . . . , ξn) ∈ X n, there is defined a bounded linear operator with adjoint A∗ given
by

A∗(ξ1, . . . , ξn) = *
,

n
k=1

A∗k1ξk, . . . ,

n
k=1

A∗knξk+
-

for every (ξ1, . . . , ξn) ∈ X n.

(ii) If the members of (Ajk) j,k ∈{1, ...,n} are pairwise commuting, then A is bijective if and only if
det(A) is bijective, where

det(A) B

σ∈Sn

sign(σ) A1σ(1) · · · Anσ(n),

Sn denotes the set of permutations of {1, . . . ,n},

sign(σ) B
n

i, j=1, i< j

sign(σ( j) − σ(i))

for all σ ∈ Sn and sign denotes the signum function.

The basic properties of the entries of the operator matrix are given in the following lemma. In
fact, these operators turn out to be bounded linear operators on L2

C(Rn). Hence, the boundedness
and self-adjointness of A follows from those of AC. The boundedness of A has appeared in various
forms5,6,8,18,23,24,67 and sometimes for special class of kernel functions. We give a result using kernel
functions that are in L1(Rn) by utilizing a well-known criterion for integral operators; see, e.g.,
corollary to Ref. 64 [Theorem 6.24].

Lemma 5 (Boundedness of matrix entries). Let n ∈ N∗, ρ > 0 and C ∈ L1(Rn) be even. Then,

AC f B
1
ρ

( 
Rn

C dvn
)
. f − C ∗ f


, (3.1)

for every f ∈ L2
C(Rn), where ∗ denotes the convolution product, there is defined a self-adjoint

bounded linear operator on L2
C(Rn) with operator norm ∥AC∥ satisfying

∥AC∥ 6 1
ρ

( ����

R

C dvn
���� + ∥C∥1

)
6

2∥C∥1

ρ
.

Proof. By a consequence of a well-known criterion for integral operators on L2-spaces, see,
e.g., Corollary to Ref. 64 [Theorem 6.24]. �

For other governing operators related to AC on bounded domains, see Ref. 4.

IV. MAIN RESULTS

The following are the three main results in this paper:
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• Main Result 1: Nonlocal operator is a bounded function of the classical operator.
• Main Result 2: Strong convergence of nonlocal solutions to classical ones through strong

resolvent convergence.
• Main Result 3: Representation of the solution in terms of spherical Bessel functions.

Our first main result establishes the connection between the nonlocal operator and the classical
one. We identify the exact expression of this connection. Namely, the governing operator AC in
(3.1) of the peridynamic wave equation is a bounded function of the classical governing operator in
(1.2). This observation enables the comparison of peridynamic solutions to those of classical elas-
ticity. In addition, it enables the generalization of peridynamic-type operators from Rn to bounded
domains as functions of the corresponding classical operator. This is the subject of our companion
papers.2,3

Theorem 6 (Main result 1). Let n ∈ N∗, Ln be the closure of the positive symmetric, essen-
tially self-adjoint operator in L2

C(Rn), given by(
C∞0 (Rn,C) → L2

C(Rn), f → −E
ρ
△ f

)
,

where ρ > 0 and E > 0. In addition, for n > 1, let C be spherically symmetric, i.e., such that

C ◦ R = C,

for every R ∈ SO(n), where SO(n) denotes the map of group of special orthogonal transformations
on Rn. Then

AC =

 1
ρ
[(F1C)(0) − F1C] ◦ ι


(Ln),

where ι : [0,∞) → Rn is defined by

ι(s) B
(

ρ

E
s

)
.e1,

for every s > 0 and e1, . . . ,en denotes the canonical basis of Rn.

Employing the notion of strong resolvent convergence, our second main result gives the strong
convergence of solutions of the governing equation to that of the classical equation. There are
results that establish the convergence of the peridynamic operator to the classical operator with
vanishing nonlocality; see Refs. 6, 7, 24, and 56. More important for applications is the correspond-
ing convergence of solutions. This question has also been pointed out in Ref. 24 [p. 862] for the
convergence of PD solutions to that of Navier equation. The studies8,18,67 considered convergence of
solutions. In particular, Refs. 39 and 40 put an effort to establish strong convergence of solutions.
One can find a survey of existing convergence results in Ref. 21 [Chap. 4]. The tool that we develop
for this purpose is the notion of strong resolvent convergence64,65 used in Theorem 7. To the best
of our knowledge, our study provides the first exploitation of strong resolvent convergence of the
functions of the classical operator to obtain strong convergence of solutions.

Theorem 7 (Main result 2). Let (X,⟨|⟩) be a non-trivial complex Hilbert space and A :
D(A) → X a densely defined, linear, and self-adjoint operator with spectrum σ(A). Furthermore,
let f1, f2, . . . be a sequence of real-valued functions in U s

C
(σ(A))71 that is everywhere on σ(A)

pointwise convergent to idσ(A), and for which there is M > 0 such that

| fν | 6 M[(1 + | |)|σ(A)]
for all ν ∈ R. Then for every g ∈ BC(R,C), where BC(Rn,C) is the space of complex-valued
bounded continuous functions on Rn,

s − lim
ν→∞

[g |σ( fν(A))]( fν(A)) = [g |σ(A)](A),
where for every ν ∈ N∗, σ( fν(A)) denotes the spectrum of fν(A).
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Remark 8. The mechanism to obtain strong convergence of nonlocal solutions to classical ones
is as follows. We first choose a sequence of micromoduli Cν so that

fCν(λ) B F1(Cν)(0) − F1(Cν)(λ) (4.1)

is pointwise convergent to idσ(L1) and that satisfies condition (6.1), where L1 is the classical gov-
erning operator in 1 dimension defined in Theorem 6. We choose A = L1 and fCν in (4.1). Then,
a well-known result [Ref. 64, Theorem 9.16] indicates that Lemma 15 implies strong resolvent
convergence of fCν(L1) to L1. Then, Theorem 7 implies that for every g ∈ BC(R,C), we obtain the
following strong convergence:

s − lim
ν→∞

[g |σ( fCν(L1))]( fCν(L1)) = [g |σ(L1)](L1). (4.2)

We denote the nonlocal operator corresponding to micromoduli Cν by ACν B fCν(L1). Then, we
apply (4.2) to solution operators g in (2.2), namely, cos(tACν ) and sin(tACν)/


ACν, both of

which are in BC(R,C). Consequently, we obtain strong convergence of nonlocal solution operators
[g |σ( fCν(L1)]( fCν(L1)) in (3.1) to the classical solution operators [g |σ(L1)](L1).

As an application, we establish strong convergence of solutions generated by standard exam-
ples of micromoduli Cν in the literature, given in (6.3) and (6.4); see Lemmata 16 and 18.

Our third main result is the discovery that the solution can be represented in terms of a series
of Bessel functions. This property can be exploited in obtaining numerical representation of the
solutions. We utilized this for the solutions depicted in Section V.

Theorem 9 (Main result 3). Let n ∈ N∗, ρ > 0, C ∈ L1(Rn) be even such that

c B

Rn

C dvn > 0.

Then, for AC in (3.1) and t ∈ R, the solutions have the following representation:

cos
(
t


AC

)
f =

∞
k=0

1
2kk!

(


ct2/ρ )k+1 jk−1(


ct2/ρ ) c−k .Ck ∗ f ,

sin
�
t
√

AC

�
√

AC

f = t
∞
k=0

1
2kk!

(


ct2/ρ )k jk(


ct2/ρ ) c−k .Ck ∗ f ,

(4.3)

for every f ∈ L2
C(Rn), where the spherical Bessel functions j0, j1, . . . are defined as in Ref. 43,

j−1(z) B cos(z)
z

, z ∈ C∗,

and the members of the sums are defined for t = 0 by continuous extension.

V. EXAMPLES AND ILLUSTRATIONS OF MAIN RESULT 3

As an application of main result 3, we construct examples of the nonlocal wave equation to
illustrate the separation of waves and propagation of discontinuities, Examples 10 and 11, respec-
tively. The depicted solutions in Figures 1 and 2 were computed symbolically using spherical Bessel
function representation of the solutions. The infinite series in (5.1) and (5.2), respectively, are trun-
cated after adding 46 terms. Visually, we do not observe a difference in the solutions if more terms
are added.

For constructing the case that characterizes separation of waves, we choose an example that
involves a micromodulus and input function both of which are normal distributions with mean value
zero and standard deviation σ and σd, respectively. Similar micromodulus functions have also been
used in Refs. 41, 63, and 68.

Example 10. For ρ,σ,σd,a > 0, we define Cσ ∈ L1(R) and f ∈ L2
C(R) by

Cσ B
a

√
2π σ

e−[1/(2σ
2)].id2

R, f B
1

√
2πσd

e−[1/(2σ
2
d
)].id2

R.
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Then for k ∈ N∗

F1Cσ = ae−(σ
2/2).id2

R, F1Ck
σ = (F1Cσ)k = ake−k(σ

2/2).id2
R,

F2(Ck
σ ∗ f ) = (F1Ck

σ) · F2 f =
ak

√
2π

e−k(σ
2/2).id2

R · e−(σ
2
d
/2).id2

R

=
ak

√
2π

e−[(kσ
2+σ2

d
)/2].id2

R =
1
√

2π
F1

ak

√
2π


kσ2 + σ2

d

e−{1/[2(kσ2+σ2
d
)]}.id2

R

= F2
ak

√
2π


kσ2 + σ2

d

e−{1/[2(kσ2+σ2
d
)]}.id2

R

and hence

Ck
σ ∗ f =

ak

√
2π


kσ2 + σ2

d

e−{1/[2(kσ2+σ2
d
)]}.id2

R.

Since

c =

R

Cσ dv1 = a > 0,

we conclude from Theorem 9 that for AC in (3.1) and t ∈ R,

cos
(
t


AC

)
f =

∞
k=0

1
2kk!

(


at2/ρ )k+1 jk−1(


at2/ρ ) 1
√

2π


kσ2 + σ2
d

e−{1/[2(kσ2+σ2
d
)]}.id2

R,

sin
�
t
√

AC

�
√

AC

f = t
∞
k=0

1
2kk!

(


at2/ρ )k jk(


at2/ρ ) 1
√

2π


kσ2 + σ2
d

e−{1/[2(kσ2+σ2
d
)]}.id2

R.

(5.1)

We depict and compare the solutions of the classical and nonlocal wave equations in Figures 1
and 2. In the classical case, as expected, we observe the propagation of waves along character-
istics; see Figures 1(a) and 1(c) for vanishing initial velocity and displacement, respectively. In
the nonlocal case, we observe repeated separation of waves and an oscillation at the center of
the initial pulse; see Figures 1(b) and 1(d) for vanishing initial velocity and displacement, respec-
tively. Solution wave patterns were also reported earlier23,25 for the same micromodulus function in
Example 11.

Now, we study the propagation of discontinuity in the data for classical and nonlocal wave
equations in the following example.

Example 11. As in the previous example, for ρ,σ,a,b, ε > 0, we define Cσ ∈ L1(R) by

Cσ B
a

√
2π σ

e−[1/(2σ
2)].id2

R.

Then

F1Cσ = ae−(σ
2/2).id2

R,

and for k ∈ N∗,

F1Ck
σ = (F1Cσ)k = ake−k(σ

2/2).id2
R = F1

ak

√
2πk σ

e−[1/(2kσ
2)].id2

R,

and hence

Ck
σ =

ak

√
2π
√

kσ2
e−[1/(2kσ

2)].id2
R.
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Furthermore, we define f ∈ L2
C(R) by

f B b e−ε.idR · χ[0,∞).

Then for x ∈ R,

(Ck
σ ∗ f )(x) = akb

√
2π
√

kσ2

 ∞

0
e−[(x−y)

2/(2kσ2)] · e−εy dy

=
2akb
π

e( εσ2
√

2k)2
e−εx erfc

(
εσ

2

√
2k − x

σ
√

2k

)
,

where erfc denotes the error function defined according to DLMF.43 We note for x ∈ R that

lim
k→0

akb
2

e( εσ2
√

2k)2
e−εx erfc

(
εσ

2

√
2k − x

σ
√

2k

)
=




0 if x < 0
b
2

if x = 0

be−εx if x > 0

.

Since

c =

R

Cσ dv1 = a > 0,

we conclude from Theorem 9 that for t ∈ R,

cos
(
t


AC

)
f =

∞
k=0

1
2kk!

(


at2/ρ )k+1 jk−1(


at2/ρ ) fk,

sin
�
t
√

AC

�
√

AC

f = t
∞
k=0

1
2kk!

(


at2/ρ )k jk(


at2/ρ ) fk,

(5.2)

for AC in (3.1), where for every x ∈ R and k ∈ N∗,

f0B b e−ε.idR · χ[0,∞),

fk(x)B 2b
π

e( εσ2
√

2k)2
e−εx erfc

(
εσ

2

√
2k − x

σ
√

2k

)
=

b
√

2π
√

kσ2
e−εx

 x

−∞
e−u

2/(2kσ2) · eεu du.

In the classical wave equation, as expected, discontinuities propagate along the characteristics;
see Figures 2(a) and 2(c) for vanishing initial velocity and displacement, respectively. On the other
hand, in the nonlocal case, the discontinuity remains in the same place for all time; see Figures 2(b)
and 2(d) for vanishing initial velocity and displacement, respectively. This confirms the results
given in Ref. 63.

VI. PROOFS AND RELATED RESULTS

A. Proof of main result 1 (nonlocal operator is a bounded function
of the classical operator)

For the study of the spectral properties of the matrix entries, needed for the application of the
results from Section II, we use Fourier transformations. This step parallels the common procedure
for constant coefficient differential operators on Rn,n ∈ N∗. With the help of the unitary Fourier
transform F2, Theorem 13 represents the matrix entries as maximal multiplication operators. This
process can be viewed as a form of “diagonalization” of the entries. Also, since bounded maximal
multiplication operators commute, the entries commute pairwise. The spectra of maximal multipli-
cation operators are well understood, leading to Corollary 14. Also, the functional calculus which
is associated to maximal multiplication operators is known and allows the construction of the func-
tional calculi of the entries. The latter is used in the proof of Theorem 6 which proves that matrix
entries corresponding to spherically symmetric micromoduli are functions of the Laplace operator.
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Assumption 12. In the following, for n ∈ N∗, F2 denotes the unitary Fourier transformation on
L2
C(Rn) which, for every rapidly decreasing test function f ∈ SC(R), is defined by

(F2 f )(k) B 1
(2π)n/2


Rn

e−ik ·idRn f dvn, k ∈ Rn.

Also, we denote by F1 the map from L1
C(Rn) to C∞(Rn,C), the space of continuous functions on Rn

vanishing at infinity, which for every f ∈ L1
C(Rn), is defined by

(F1 f )(k) B

Rn

e−ik ·idRn f dvn, k ∈ Rn.

Theorem 13 (Fourier transforms of the entries). Let

T 1
ρ [(F1C)(0)−F1C]

denote the maximal multiplication operator by the bounded continuous function
1
ρ
[(F1C)(0) − F1C]

on L2
C(Rn). Then

F2 ◦ AC ◦ F−1
2 = T 1

ρ [(F1C)(0)−F1C].

Proof. First, we define an operator K B C ◦ (p1 − p2), with projections p1,p2 : R2n → Rn,
where

p1(x1, . . . , xn, y1, . . . , yn) B (x1, . . . , xn), p2(x1, . . . , xn, y1, . . . , yn) B (y1, . . . , yn),
for (x1, . . . , xn, y1, . . . , yn) ∈ R2n. Since C is even, K is symmetric. Furthermore, for every x ∈ Rn

and y ∈ Rn,

K(x, ·) = C(x − ·) = C(· − x), K(·, y) = C(· − y) ∈ L1(Rn).
K induces a self-adjoint bounded linear integral operator Int(K) on L2

C(Rn) defined by

[Int(K) f ](x) B

Rn

K(x, ·) · f dvn =

Rn

C(x − ·) · f dvn = (C ∗ f )(x).
We note that for every L1

C(Rn) ∩ L2
C(Rn),

[F2 ◦ Int(K)] f = F2(C ∗ f ) = 1
(2π)n/2 .F1(C ∗ f ) = 1

(2π)n/2 .(F1C)(F1 f )
= (F1C)(F2 f ) = [TF1C ◦ F2] f .

Since L1
C(Rn) ∩ L2

C(Rn) is dense in L2
C(Rn), the bounded linear operators F2 ◦ Int(K) and TF1C ◦ F2

coincide on a dense subspace of L2
C(Rn), they coincide on the whole of L2

C(Rn). Consequently, the
result follows from

[F2 ◦ Int(K)] f = [TF1C ◦ F2] f , f ∈ L2
C(Rn).

�

We finally arrive at the proof of main result 1.

Proof. First, we note that

F2 ◦ Ln ◦ F−1
2 = TE

ρ | |2,

where TE
ρ | |2 denotes the maximal multiplication operator in L2

C(Rn) by the function E
ρ
| |2. In partic-

ular, this implies that the spectrum of Ln, σ(Ln), is given by [0,∞) and for every g ∈ U s
C
([0,∞))

that

g(Ln) = F−1
2 ◦ Tg◦

(
E
ρ | |2) ◦ F2,



062902-13 Beyer, Aksoylu, and Celiker J. Math. Phys. 57, 062902 (2016)

where Tg◦
(
E
ρ | |2) denotes the maximal multiplication operator on L2

C(Rn) by the function

g ◦
(

E
ρ
| |2

)
.

Furthermore, we note that (F1C)(0) − F1C ∈ BC(Rn,R) and that (F1C)(0) − F1C is even, since for
every k ∈ Rn

(F1C)(−k) =

Rn

eik ·idRnC dvn =

Rn

e−ik ·idRn[C ◦ (−idRn)] dvn

=


Rn

e−ik ·idRnC dvn = (F1C)(k),

(F1C)(k) = 1
2


Rn

e−ik ·idRnC dvn +

Rn

eik ·idRnC dvn


=


Rn

cos(k · idRn)C dvn,

(F1C)(0) − (F1C)(k) =

Rn

[1 − cos(k · idRn)]C dvn = 2

Rn

sin2
(

k
2
· idRn

)
C dvn.

Furthermore for n > 1, we note that

(F1C)(R(k)) =

Rn

e−iR(k)·idRnC dvn =

Rn

e−iR(k)·R (C ◦ R) dvn

=


Rn

e−ik ·idRn (C ◦ R) dvn =

Rn

e−ik ·idRnC dvn = (F1C)(k)
for every R ∈ SO(n) and k ∈ Rn and hence that

(F1C)(k) = (F1C)(|k |.e1)
for every k ∈ Rn. In particular,

1
ρ
[(F1C)(0) − F1C] ◦ ι ∈ U s

R([0,∞))
and  1

ρ
[(F1C)(0) − F1C] ◦ ι


(Ln) = F−1

2 ◦ T� 1
ρ [(F1C)(0)−F1C]◦ι

	
◦
(
E
ρ | |2) ◦ F2

= F−1
2 ◦ T 1

ρ [(F1C)(0)−F1C]◦(| |.e1) ◦ F2 = F−1
2 ◦ T 1

ρ [(F1C)(0)−F1C] ◦ F2 = AC .

�

We give the spectrum and point spectrum of AC. The spectrum is an essential ingredient in
constructing functional calculus for AC; see Lemma 20.

Corollary 14 (Spectral Properties of AC).

σ(AC) = Ran
1
ρ
.[(F1C)(0) − F1C],

σp(AC) =

λ ∈ R :


k ∈ R :

1
ρ
.[(F1C)(0) − (F1C)(k)] = λ


is no Lebesgue null set


,

where the overline denotes the closure in R. Finally, for every λ ∈ σ(AC), AC − λ is not surjective.

Proof. The result is a consequence of well-known properties of multiplication operators. �

B. Proof of main result 2 (strong convergence of nonlocal solutions to classical ones
through strong resolvent convergence)

Lemma 15 gives conditions for the convergence of bounded functions of a self-adjoint oper-
ator to converge to that operator, which implies strong resolvent convergence and also the strong
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convergence of the same bounded continuous function of each member of the sequence against that
bounded continuous function of the self-adjoint operator [Ref. 64, Theorem 9.16]; see Theorem 7.

Lemma 15 (Convergence of bounded functions of a self-adjoint operator to that operator). Let
(X,⟨|⟩) be a non-trivial complex Hilbert space and A : D(A) → X a densely defined, linear, and
self-adjoint operator with spectrum σ(A). Furthermore, let f1, f2, . . . be a sequence in U s

C
(σ(A))

that is everywhere on σ(A) pointwise convergent to idσ(A), and for which there is M > 0 such that

| fν | 6 M[(1 + | |)|σ(A)] (6.1)

for all ν ∈ R. Then

lim
ν→∞

fν(A)ξ = Aξ, ξ ∈ D(A). (6.2)

Proof. Let ξ ∈ D(A) and ψξ the corresponding spectral measure. According to the spectral
theorem for densely defined, self-adjoint linear operators in Hilbert spaces, id2

R is ψξ-summable and

∥ fµ(A)ξ − fν(A)ξ∥2 = ∥( fµ − fν)(A)ξ∥2

= ⟨( fµ − fν)(A)ξ |( fµ − fν)(A)ξ⟩ = ⟨ξ∥ fµ − fν |2(A)ξ⟩
=


σ(A)

| fµ − fν |2 dψξ = ∥ fµ − fν∥2
2,ψξ
= ∥ fµ − idσ(A) + idσ(A) − fν∥2

2,ψξ

6
(∥ fµ − idσ(A)∥2,ψξ

+ ∥idσ(A) − fν∥2,ψξ

)2
,

for µ, ν ∈ N∗. As a consequence of the pointwise convergence of f1, f2, . . . on σ(A) to idσ(A), (6.1)
and Lebesgue’s dominated convergence theorem, it follows that

lim
µ→∞

∥ fµ − idσ(A)∥2,ψξ
= 0

and hence that f1(A)ξ, f2(A)ξ, . . . is a Cauchy sequence in X . Since (X, ∥ ∥) is in particular com-
plete, the latter implies that f1(A)ξ, f2(A)ξ, . . . is convergent in (X, ∥ ∥). Furthermore,

⟨ξ | lim
ν→∞

fν(A)ξ⟩ = lim
ν→∞

⟨ξ | fν(A)ξ⟩ = lim
ν→∞


σ(A)

fν dψξ

=


σ(A)

idσ(A) dψξ = ⟨ξ |Aξ⟩,
where again the pointwise convergence of f1, f2, . . . on σ(A) to idσ(A), (6.1), Lebesgue’s dominated
convergence theorem and the spectral theorem for densely defined, self-adjoint linear operators in
Hilbert spaces has been applied. From the polarization identity for ⟨|⟩, it follows that

⟨ξ | lim
ν→∞

fν(A)η⟩ = ⟨ξ |Aη⟩
for all ξ,η ∈ D(A). Since D(A) is dense in X , the latter implies that

⟨ξ | lim
ν→∞

fν(A)η⟩ = ⟨ξ |Aη⟩
for all ξ ∈ X , η ∈ D(A) and hence for every η ∈ D(A) that

lim
ν→∞

fν(A)η = Aη.

�

Now, main result 2, Theorem 7, is a consequence of Lemma 15, and, for example, Ref. 48
[Vol. I, Theorems 8.20 and 8.25].

We apply our main result 2 to standard examples treated in the literature. Hence, we easily
obtain strong resolvent convergence for these cases, i.e., Lemmas 16 and 18. They provide se-
quences of micromoduli which satisfy the conditions of Lemma 15. Lemma 16 has also been treated
in Refs. 41 and 61 and Lemma 18 has been treated in Ref. 41. Remark 8 applies Theorem 7 to the
sequences of micromoduli from Lemmas 16 and 18. As a consequence, for fixed data and t ∈ R, the
solutions of the initial value problem at time t corresponding to the members of each sequence of
micromoduli converge in L2

C(R) to the corresponding classical solution at time t.
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Lemma 16. For every ν ∈ N∗, we define Cν ∈ L1(R) by

Cν B 3Eν3χ[− 1
ν , 1

ν ]. (6.3)

Then, the result (6.2) preparing for strong convergence of solutions is satisfied

lim
ν→∞


1
ρ
[(F1Cν)(0) − F1C] ◦ ι


(L1) f = L1 f , f ∈ D(L1) = W 2

C(R).

Remark 17. By applying Theorem 7 as in Remark 8, we obtain that the solutions of the nonlocal
operator ACν strongly converge to that of the local operator for the micromoduli Cν in (6.3).

Proof. For ν ∈ N∗,

F1Cν = 6Eν3 sin(ν−1.idR)
idR

.

Furthermore, for ν ∈ N∗, λ > 0,

1
ρ
[(F1Cν)(0) − F1C] ◦ ι(λ) = 1

ρ
[(F1Cν)(0) − F1Cν]

(
ρ

E
λ

)
=

6Eν2

ρ


1 − sin(ν−1.idR)

ν−1.idR

 (
ρ

E
λ

)
and k > 0

1 − sin(k/ν)
k/ν

= ν

 1/ν

0
[1 − cos(k x)] dx =

 1

0
[1 − cos(ku/ν)] du

=

 1

0

 k/ν

0
u sin(uy) dy


du =

k
ν

 1

0

 1

0
u sin(kuv/ν) dv


du

=
k2

ν2


[0,1]2

u2v
sin(kuv/ν)

kuv/ν
dudv

and hence that

ν2

1 − sin(k/ν)

k/ν


= k2


[0,1]2

u2v
sin(kuv/ν)

kuv/ν
dudv.

From the latter, we conclude with the help of Lebesgue’s dominated convergence theorem that

lim
ν→∞

ν2

1 − sin(k/ν)

k/ν


=

k2

6

as well as that
����ν

2

1 − sin(k/ν)

k/ν

 ���� 6 k2

[0,1]2

u2v
����
sin(kuv/ν)

kuv/ν
���� dudv 6 k2


[0,1]2

u2v dudv =
k2

6
.

In particular, we conclude for λ > 0 that

lim
ν→∞

1
ρ
[(F1Cν)(0) − F1C] ◦ ι(λ) = 6Eν2

ρ
· ρλ

6Eν2 = λ

as well as that
����
1
ρ
[(F1Cν)(0) − F1C] ◦ ι(λ)���� 6

6E
ρ
· 1

6
ρλ

E
= λ.

Finally, we conclude the result from Lemma 15. �

Lemma 18. For every ν ∈ N∗, we define Cν ∈ L1(R) by

Cν B
2Eν3

√
2π

e−(ν
2/2).id2

R = 2Eν2 · ν
√

2π
e−(ν

2/2).id2
R. (6.4)
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Then, the result (6.2) preparing for strong convergence of solutions is satisfied,

lim
ν→∞


1
ρ
[(F1Cν)(0) − F1C] ◦ ι


(L1) f = L1 f , f ∈ D(L1) = W 2

C(R).

Remark 19. By applying Theorem 7 as in Remark 8, we obtain that the solutions of the nonlocal
operator ACν strongly converge to that of the local operator for the micromoduli Cν in (6.4).

Proof. For ν ∈ N∗, λ > 0,

F1Cν = 2Eν2 · e−[1/(2ν2)].id2
R,

1
ρ
[(F1Cν)(0) − F1Cν] ◦ ι(λ) = 1

ρ
[(F1Cν)(0) − F1Cν]

(
ρ

E
λ

)
=

2Eν2

ρ


1 − e−[1/(2ν

2)].id2
R

 (
ρ

E
λ

)
and k > 0

ν2[1 − e−k
2/(2ν2)] = ν2

 k2/(2ν2)

0
e−u du =

 k2/2

0
e−v/ν

2
dv.

From the latter, we conclude for k > 0, with the help of Lebesgue’s dominated convergence theo-
rem, that

lim
ν→∞

ν2[1 − e−k
2/(2ν2)] = k2

2
as well as that

����ν
2[1 − e−k

2/(2ν2)] ���� 6
k2

2
and hence for λ > 0 that

lim
ν→∞

1
ρ
[(F1Cν)(0) − F1Cν] ◦ ι(λ) = 2E

ρ

ρ

2E
λ = λ,

����
1
ρ
[(F1Cν)(0) − F1Cν] ◦ ι(λ)���� 6

2E
ρ

ρ

2E
λ = λ.

Finally, we conclude the result from Lemma 15. �

C. Proof of main result 3 (representation of the solution in terms of spherical
Bessel functions)

In this section, the goal is to prove that the solutions of the nonlocal wave equation given in
(2.2) can be expressed in terms of spherical Bessel functions. This result has a practical impli-
cation because it allows symbolic computation of solutions. Indeed, using symbolic computation,
we generate solutions of the nonlocal wave equation and illustrate how separation of waves and
propagation of discontinuities occur; see Figures 1 and 2. In addition, one can use the explicit
representations of solutions for benchmarking numerical results which helps in the development of
numerical methods for computing approximate solutions. Such benchmarking could be used, for
instance, for verifying and validating numerical solutions.

Main result 1 indicates that the governing peridynamic operator is bounded. Hence, functions
of that operator in (2.2) can be represented in the form of power series in the governing operator
due to functional calculus of self-adjoint and bounded operators. In Lemma 20, we prove that
holomorphic functional calculus is available for power series representation. In Lemma 21, we
apply this representation to the functions present in the solution of the initial value problem of the
homogeneous wave equation. Lemmas 20 and 21 can be viewed as straightforward applications of
the spectral theorems for densely defined, self-adjoint linear operators in Hilbert spaces.
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Lemma 20 (Holomorphic functional calculus). Let (X,⟨|⟩) be a non-trivial complex Hilbert
space, A ∈ L(X,X) self-adjoint, and σ(A) ⊂ R the (non-empty, compact) spectrum of A. Further-
more, let R > ∥A∥ and f : UR(0) → C be holomorphic. Then, the sequence(

f (k)(0)
k!

.Ak

)
k ∈N

is absolutely summable in L(X,X) and

( f |σ(A))(A) =
∞
k=0

f (k)(0)
k!

.Ak .

Proof. First, we note that according to Taylor’s theorem, general properties of power series, and
the compactness of σ(A) that (

f (k)(0)
k!

.zk
)
k ∈N

is absolutely summable for every z ∈ UR(0) as well as, since σ(A) ⊂ B∥A∥(0) ⊂ UR(0), that the
sequence of continuous functions

*
,

n
k=0

f (k)(0)
k!

.(idR|σ(A))n+
-n∈N

converges uniformly to the continuous function f |σ(A). In particular, since ∥A∥ < R, this implies
that the sequence (

f (k)(0)
k!

.Ak

)
k ∈N

is absolutely summable in L(X,X), and it follows from the spectral theorem for bounded self-
adjoint operators in Hilbert spaces that

*
,

n
k=0

f (k)(0)
k!

.(idR|σ(A))n+
-
(A) =

n
k=0

f (k)(0)
k!

.Ak,

as well as that

( f |σ(A))(A) =
∞
k=0

f (k)(0)
k!

.Ak .

�

Now, we give the exact representation of the terms present in (2.2) in terms of power series
in A.

Lemma 21 (Power series representation). Let (X,⟨|⟩) be a non-trivial complex Hilbert space,
the complex square-root function, with domain C \ ((−∞,0] × {0}). A ∈ L(X,X) self-adjoint

and σ(A) ⊂ R the (non-empty, compact) spectrum of A. For every t ∈ R, the sequences(
(−1)k t2k

(2k)! .A
k

)
k ∈N

,

(
(−1)k t2k+1

(2k + 1)! .A
k

)
k ∈N

are absolutely summable in L(X,X) and

cos
(
t
√

A
)
=

∞
k=0

(−1)k t2k

(2k)! Ak,

sin
(
t
√

A
)

√
A

=

∞
k=0

(−1)k t2k+1

(2k + 1)! Ak .
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Proof. We note that for every t ∈ R,

cos(t ) : C \ ((−∞,0] × {0}) → C,
cosh(t ◦ (−idC) ) : C \ ([0,∞) × {0}) → C

are holomorphic functions such that

cos(t√z ) =
∞
k=0

(−1)k (t
√

z)2k
(2k)! =

∞
k=0

(−1)k t2k

(2k)! zk,

cosh(t√−z ) =
∞
k=0

(t√−z)2k
(2k)! =

∞
k=0

(−1)k t2k

(2k)! zk

for every z ∈ C \ ((−∞,0] × {0}) and z ∈ C \ [0,∞) × {0}), respectively. Furthermore,

sin(t ) : C \ ((−∞,0] × {0}) → C,
sinh(t ) ◦ (−idC) : C \ ([0,∞) × {0}) → C

are holomorphic functions such that

sin(t√z )
√

z
=

1
√

z

∞
k=0

(−1)k (t
√

z)2k+1

(2k + 1)! =
∞
k=0

(−1)k t2k+1

(2k + 1)! zk,

sinh(t√−z )
√
−z

=
1
√
−z

∞
k=0

(t√−z)2k+1

(2k + 1)! =
∞
k=0

(−1)k t2k+1

(2k + 1)! zk

for every z ∈ C \ ((−∞,0] × {0}) and z ∈ C \ [0,∞) × {0}), respectively. Then, it follows from
Lemma 20 that the sequences(

(−1)k t2k

(2k)! .A
k

)
k ∈N

,

(
(−1)k t2k+1

(2k + 1)! .A
k

)
k ∈N

are absolutely summable in L(X,X) and that

cos
(
t
√

A
)
=

∞
k=0

(−1)k t2k

(2k)! Ak,

sin
(
t
√

A
)

√
A

=

∞
k=0

(−1)k t2k+1

(2k + 1)! Ak . �

The goal here was to show that (2.2) can be expressed by spherical Bessel functions. In order
to arrive at a Bessel function representation, we first connect (2.2) to generalized hypergeometric
functions. In Theorem 22, we give a general result which involves two arbitrary bounded commut-
ing operators A and B. In Theorem 24, we will apply this result to special commuting operators,
multiple of the identity operator, and a convolution, i.e., c − C, because the governing operator is of
this form. In addition, we expect that the expansion below can be used for large time asymptotic of
the solutions of the nonlocal wave equation, a research direction beyond the scope of this paper.

Theorem 22. Let (X,⟨|⟩) be a non-trivial complex Hilbert space,


the complex square-root
function, with domain C \ ((−∞,0] × {0}). A,B ∈ L(X,X) self-adjoint such that [A,B] = 0 and
σ(A),σ(A + B) ⊂ R the (non-empty, compact) spectra of A and A + B, respectively. Then

cos
(
t
√

A + B
)
=

∞
k=0

(−1)k · t2k

(2k)! .
 

0F1

(
−; k +

1
2

;− t2

4
.idσ(A)

)
(A)


Bk,

sin
(
t
√

A + B
)

√
A + B

=

∞
k=0

(−1)k · t2k+1

(2k + 1)! .
 

0F1

(
−; k +

3
2

;− t2

4
.idσ(A)

)
(A)


Bk,

where 0F1 denotes the generalized hypergeometric function, defined as in Ref. 43.
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Proof. In a first step, we note for every t ∈ R that the family(
(−1)k+l

(
k + l

l

)
t2(k+l)

[2(k + l)]! AkBl

)
(k,l)∈N2

is absolutely summable in L(X,X), since for (k, l) ∈ N2

(−1)k+l
(

k + l
l

)
t2(k+l)

[2(k + l)]! AkBl 6
t2(k+l)

[2(k + l)]!
(

k + l
l

)
∥A∥k∥B∥l

=
(k + l)!

l!k![2(k + l)]!
�
t2∥A∥ �k� t2∥B∥ �l 6 1

k!
�
t2∥A∥ �k 1

l!
( t2∥B∥ )l

and hence for every finite subset S ⊂ N2,
(k,l)∈S

(−1)k+l
(

k + l
l

)
t2(k+l)

[2(k + l)]! AkBl 6 exp
�
t2∥A∥� exp

�
t2∥B∥� .

Also, we note that the family(
(−1)k+l

(
k + l

l

)
t2(k+l)+1

[2(k + l) + 1]! AkBl

)
(k,l)∈N2

is absolutely summable in L(X,X), since for (k, l) ∈ N2,

(−1)k+l
(

k + l
l

)
t2(k+l)+1

[2(k + l) + 1]! AkBl2
6

|t |2(k+l)+1

[2(k + l) + 1]!
(

k + l
l

)
∥A∥k∥B∥l

= |t | (k + l)!
l!k![2(k + l) + 1]!

�
t2∥A∥ �k� t2∥B∥ �l 6 |t | 1

k!
�
t2∥A∥ �k 1

l!
( t2∥B∥ )l,

leading to 
(k,l)∈S


(−1)k+l

(
k + l

l

)
t2(k+l)+1

[2(k + l) + 1]! AkBl

6 |t | exp

�
t2∥A∥� exp

�
t2∥B∥� ,

for every finite subset S ⊂ N2. Hence, we conclude the following:

∞
k=0

(−1)k t2k

(2k)! (A + B)k =
∞
k=0

k
l=0

(−1)k t2k

(2k)!
(

k
l

)
Ak−lBl

=

∞
l=0

∞
k=l

(−1)k t2k

(2k)!
(

k
l

)
Ak−lBl =

∞
l=0



∞
k=l

(−1)k
(

k
l

)
t2k

(2k)! Ak−l


Bl

=

∞
l=0



∞
k=0

(−1)k+l
(

k + l
l

)
t2(k+l)

[2(k + l)]! Ak


Bl

=

∞
l=0

(−1)lt2l


∞
k=0

(−1)k
(

k + l
l

)
t2k

[2(k + l)]! Ak


Bl

=

∞
l=0

(−1)l t2l


∞
k=0

(k + l)!
[2(k + l)]! · l! ·

1
k!

(−t2A)k


Bl .

In the following, we show the auxiliary result that for every k, l ∈ N,

(k + l)!
[2(k + l)]! · l! = 2−k · 1k−1

m=0[2(l + m) + 1] ·
1

(2l)! . (6.5)

The proof proceeds by induction on k. First, we note that

l!
(2l)! · l! = 2−0 · 1−1

m=0[2(l + m) + 1] ·
1

(2l)! .
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In the following, we assume that (6.5) is true for some k ∈ N. Then

(k + l + 1)!
[2(k + l + 1)]! · l! =

1
2
· 1

2(k + l) + 1
· (k + l)!
[2(k + l)]! · l!

=
1
2
· 1

2(k + l) + 1
· 2−k · 1k−1

m=0[2(l + m) + 1] ·
1

(2l)!
= 2−(k+1) · 1k

m=0[2(l + m) + 1] ·
1

(2l)! ,

and hence (6.5) is true for k + 1. The equality (6.5) implies for every k, l ∈ N that

(k + l)!
[2(k + l)]! · l! = 2−k · 1k−1

m=0[2(l + m) + 1] ·
1

(2l)!
= 4−k · 1k−1

m=0

�
l + m + 1

2

� ·
1

(2l)! = 4−k · 1
(2l)! �l + 1

2

�
k

.

Hence
∞
k=0

(−1)k t2k

(2k)! (A + B)k =
∞
l=0

(−1)l t2l


∞
k=0

1
(2l)! �l + 1

2

�
k

· 1
k!

(
− t2

4
.A

)k Bl

∞
l=0

(−1)l t2l

(2l)!


∞
k=0

1�
l + 1

2

�
k
· k!
·
(
− t2

4
.A

)k Bl .

By definition of the generalized hypergeometric function 0F1, for every l ∈ N, z ∈ C,

0F1

(
−; l +

1
2

; z
)
=

∞
k=0

zk

(l + 1
2 )k · k!

.

Hence
∞
k=0

(−1)k t2k

(2k)! (A + B)k =
∞
l=0

(−1)l · t2l

(2l)! .
 

0F1

(
−; l +

1
2

;− t2

4
.idσ(A)

)
(A)


Bl .

Furthermore,

∞
k=0

(−1)k t2k+1

(2k + 1)! (A + B)k =
∞
k=0

k
l=0

(−1)k t2k+1

(2k + 1)!
(

k
l

)
Ak−lBl

=

∞
l=0

∞
k=l

(−1)k t2k+1

(2k + 1)!
(

k
l

)
Ak−lBl =

∞
l=0



∞
k=l

(−1)k
(

k
l

)
t2k+1

(2k + 1)! Ak−l


Bl

=

∞
l=0



∞
k=0

(−1)k+l
(

k + l
l

)
t2(k+l)+1

[2(k + l) + 1]! Ak


Bl

=

∞
l=0

(−1)lt2l+1


∞
k=0

(−1)k
(

k + l
l

)
t2k

[2(k + l) + 1]! Ak


Bl

= t
∞
l=0

(−1)l · t2l


∞
k=0

(k + l)!
[2(k + l) + 1]! · l! ·

1
k!
.
�
−t2A

�k
Bl .

Since for every k, l ∈ N,

(k + l)!
[2(k + l) + 1]! · l! =

1
2
· 1

k + l + 1
2

· (k + l)!
[2(k + l)]! · l!

=
1
2
· 1

k + l + 1
2

· 4−k · 1
(2l)!�l + 1

2

�
k

=
1
2
· 4−k · 1

(2l)! �l + 1
2

� �
l + 3

2

�
k

= 4−k · 1
(2l + 1)! �l + 3

2

�
k

,
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we conclude that
∞
k=0

(−1)k t2k+1

(2k + 1)! (A + B)k

= t
∞
l=0

(−1)l · t2l


∞
k=0

1
(2l + 1)! �l + 3

2

�
k

· 1
k!
.

(
− t2

4
.A

)k Bl

=

∞
l=0

(−1)l · t2l+1

(2l + 1)!


∞
k=0

1�
l + 3

2

�
k
· k!

.

(
− t2

4
.A

)k Bl

=

∞
l=0

(−1)l · t2l+1

(2l + 1)! .
 

0F1

(
−; l +

3
2

;− t2

4
.idσ(A)

)
(A)


Bl .

�

We give a connection between generalized hypergeometric and spherical Bessel functions
which will lead to main result 3.

Lemma 23. For every k ∈ N and x > 0,

x2k

(2k)! . 0F1

(
−; k +

1
2

;− x2

4

)
=

1
2kk!

xk+1 jk−1(x),
x2k+1

(2k + 1)! · 0F1

(
−; k +

3
2
,− x2

4

)
=

1
2kk!

xk+1 jk(|x |),

where the spherical Bessel functions j0, j1, . . . are defined as in Ref. 43 and

j−1(x) B cos(x)
x

, x > 0.

Proof. We note that for every ν ∈ (0,∞), k ∈ N, and x > 0,

Jν(x)B
( x

2

)ν ∞
k=0

(−1)k
k! Γ(ν + k + 1)

(
x2

4

)k
=

1
Γ(ν + 1) ·

( x
2

)ν ∞
k=0

(−1)k
k! Γ(ν+k+1)

Γ(ν+1)

(
x2

4

)k

=
1

Γ(ν + 1) ·
( x

2

)ν ∞
k=0

(−1)k
k! (ν + 1)k

(
x2

4

)k
=

1
Γ(ν + 1) ·

( x
2

)ν
· 0F1(−; ν + 1,−x2/4).

jk(x)B


π

2x
Jk+ 1

2
(x) =


π

2x
1

Γ(k + 3
2 )
·
( x

2

)k+ 1
2 · 0F1(−; k +

3
2
,−x2/4)

=

√
π

2Γ(k + 3
2 )
·
( x

2

)k
· 0F1(−; k +

3
2
,−x2/4).

Hence for every k ∈ N, x > 0

0F1(−; k +
3
2
,−x2/4) = 2Γ(k + 3

2 )√
π

( x
2

)−k
jk(x) = 2k+1

(
1
2

)
k+1

x−k jk(x)

as well as

x2k+1

(2k + 1)! 0F1(−; k +
3
2
,−x2/4) = x2k+1

(2k + 1)! 2k+1
(

1
2

)
k+1

x−k jk(x)

=
x2k+1

(2k + 1)! 2k+1 2−(k+1) (2k + 2)!
2k+1(k + 1)! x−k jk(x) = (2k + 2)

2k+1(k + 1)! xk+1 jk(x)

=
1

2kk!
xk+1 jk(x).
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Furthermore, for every k ∈ N∗, x > 0

x2k

(2k)! . 0F1(−; k +
1
2

;−x2/4) = x
2k

1
2k−1(k − 1)! xk jk−1(x) = 1

2kk!
xk+1 jk−1(x). (6.6)

Since for x > 0

0F1(−;
1
2
,−x2/4) =

∞
k=0

1� 1
2

�
k
· k!
·
(
− x2

4

)k
=

∞
k=0

1

2−k · (2k)!
2k ·k!

· k!
·
(
− x2

4

)k

=

∞
k=0

4k

(2k)! ·
(
− x2

4

)k
=

∞
k=0

(−1)k x2k

(2k)! = cos(x),

the equality (6.6) is true also for k = 0, if we define

j−1(x) B cos(x)
x

.

�

Eventually, we have a representation involving two commuting operators, with one of the
operators being a multiple of the identity and a general C which is not necessarily a convolution
operator.

Theorem 24. Let (X,⟨|⟩) be a non-trivial complex Hilbert space,


the complex square-root
function, with domain C \ ((−∞,0] × {0}). c > 0, C ∈ L(X,X) self-adjoint and σ(c − C) ⊂ R the
(non-empty, compact) spectrum of c − C. Then for every t ∈ R,

cos
(
t
√

c − C
)
=

∞
k=0

1
2kk!

(√ct2 )k+1 jk−1(
√

ct2 )
(

1
c
.C

)k
,

sin
(
t
√

c − C
)

√
c − C

= t
∞
k=0

1
2kk!

(√ct2 )k jk(
√

ct2 )
(

1
c
.C

)k
,

where the spherical Bessel functions j0, j1, . . . are defined as in Ref. 43 and

j−1(x) B cos(x)
x

, x > 0

and the members of the sums are defined for t = 0 by continuous extension.

Proof. Direct consequence of Theorem 22 and Lemma 23. �

Now, main result 3, Theorem 9, is a consequence of Theorem 24. The representations given in
Theorems 22, 24, and 9 were used to express the solutions in Examples 10 and 11.

As a side result, we provide an error estimate for the representation in Theorem 24. For the
solution plots, Figures 1 and 2, the infinite series is truncated after adding 46 terms, i.e., N = 45.
The below error estimate has been used to monitor the error. For N = 45 and t = 20, the error is in
the order of 10−13.

Corollary 25 (Error estimates). Let (X,⟨|⟩), ,c,C,σ(c − C), j−1, j0, j1, . . . as in Theorem 24
and N ∈ N. Then for every t ∈ R,


cos

(
t
√

c − C
)
−

N
k=0

1
2kk!

(


ct2 )k+1 jk−1(


ct2 )
(

1
c
.C

)k 6
π

N!
min




1,
(

t2∥C∥
4

)N+1


e t2∥C∥/4,



sin
(
t
√

c − C
)

√
c − C

− t
∞
k=0

1
2kk!

(


ct2 )k jk(


ct2 )
(

1
c
.C

)k 6
π

2(N + 1)! |t | min



1,
(

t2∥C∥
4

)N+1


e t2∥C ∥/4.
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Proof. As a consequence of Theorem 24, for t ∈ R,

cos

(
t
√

c − C
)
−

N
k=0

1
2kk!

(√ct2 )k+1 jk−1(
√

ct2 )
(

1
c
.C

)k
6

∞
k=N+1

1
2kk!

(√ct2 )k+1| jk−1(
√

ct2 )|
( ∥C∥

c

)k
6

∞
k=N+1

1
2kk!

(√ct2 )k+1 π
(√ct2 )k−1

2k(k − 1)!
( ∥C∥

c

)k
= π

∞
k=N+1

1
k!(k − 1)!

(
t2∥C∥

4

)k
6

π

N!

∞
k=N+1

1
k!

(
t2∥C∥

4

)k
,

where the integral representation DLMF 10.54.1 of Ref. 43 (http://dlmf.nist.gov/10.54) for
spherical Bessel functions has been used. Since

∞
k=N+1

1
k!

(
t2∥C∥

4

)k
=

(
t2∥C∥

4

)N+1 ∞
k=N+1

1
k!

(
t2∥C∥

4

)k−N−1

6

(
t2∥C∥

4

)N+1 ∞
k=N+1

1
(k − N − 1)!

(
t2∥C∥

4

)k−N−1

6

(
t2∥C∥

4

)N+1

e t2∥C∥/4,

this implies that

cos

(
t
√

c − C
)
−

N
k=0

1
2kk!

(√ct2 )k+1 jk−1(
√

ct2 )
(

1
c
.C

)k 6
π

N!
min




1,
(

t2∥C∥
4

)N+1


e t2∥C ∥/4.

Furthermore,


sin
(
t
√

c − C
)

√
c − C

− t
N
k=0

1
2kk!

(√ct2 )k jk(
√

ct2 )
(

1
c
.C

)k
6 |t |

∞
k=N+1

1
2kk!

(√ct2 )k | jk(
√

ct2 )|
( ∥C∥

c

)k
6 |t |

∞
k=N+1

1
2kk!

(√ct2 )k π (√ct2 )k
2k+1k!

( ∥C∥
c

)k
=
π

2
|t |

∞
k=N+1

1
(k!)2

(
t2∥C∥

4

)k
6

π

2(N + 1)! |t |
∞

k=N+1

1
k!

(
t2∥C∥

4

)k
6

π

2(N + 1)! |t | min



1,
(
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D. Proof of Theorem 3 (solutions of inhomogeneous wave equations)

We give a proof of Theorem 3.

Proof. In a first step, we note for λ > 0 that

sin[(t − τ)√λ ]
√
λ

=
sin(t√λ )
√
λ

cos(τ√λ ) − cos(t√λ ) sin(τ√λ )
√
λ

.

Then,

sin
((t − τ)√A

)
√

A
b(τ) =




sin
(
t
√

A
)

√
A

cos
(
τ
√

A
)
− cos

(
t
√

A
) sin

(
τ
√

A
)

√
A




b(τ)

= β(t)α(τ)b(τ) − α(t)β(τ)b(τ)
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for all t, τ ∈ R, where α, β : R → L(X,X) are defined by

α(t) B cos
(
t
√

A
)
, β(t) B sin

(
t
√

A
)

√
A

,

for every t ∈ R. In the following, for ξ ∈ D(A), we are going to use that the maps

(R → X, t → α(t)ξ ) and (R → X, t → β(t)ξ )
are differentiable with derivatives

(R → X, t → −β(t)Aξ ) and (R → X, t → α(t)ξ ),
respectively. We note that, as a consequence of the spectral theorem for densely defined, self-adjoint
linear operators in Hilbert spaces, that a, b are strongly continuous and that

α(t)D(A) ⊂ D(A), β(t)D(A) ⊂ D(A),
for every t ∈ R. Also for every k ∈ UC(σ(A))s, k(A)D(A) ⊂ D(A), and for ξ ∈ D(A),

∥k(A)ξ∥2
A = ∥k(A)ξ∥2 + ∥Ak(A)ξ∥2 = ∥k(A)ξ∥2 + ∥k(A)Aξ∥2


6 ∥k(A)∥2

Op · ∥ξ∥2
A


.

Hence a,b induce strongly continuous maps from R to XA, which we indicate with the same
symbols, and where XA B (D(A), ∥ ∥A). In addition, we note that the inclusion ι of XA into X
is continuous. In the next step, we observe for a strongly continuous c : R → L(XA,XA) and a
continuous g : R → XA that

∥c(t + h)g(t + h) − c(t)g(t)∥A= ∥c(t + h)g(t + h) − c(t + h)g(t) + c(t + h)g(t) − c(t)g(t)∥A
= ∥c(t + h)[g(t + h) − g(t)]A + [c(t + h) − c(t)]g(t)∥A
6 ∥c(t + h)∥ · ∥g(t + h) − g(t)∥A + ∥c(t + h)g(t) − c(t)g(t)∥A

and hence that (R → XA, t → c(t)g(t)) is continuous as well as that(
R → XA, t →

 A

It

c(τ)g(τ)dτ
)
,

where
 A denotes weak integration in XA, is differentiable with derivative

(R → XA, t → c(t)g(t)).
We conclude for every t ∈ R that

β(t)
 A

It

α(τ)b(τ) dτ − α(t)
 A

It

β(τ)b(τ) dτ

=

 A

It

[β(t)α(τ)b(τ) − α(t)β(τ)b(τ)] dτ

=

 A

It

sin
((t − τ)√A

)
√

A
b(τ) dτ = v(t).

Furthermore, we observe for c : R → L(X,X), g : R → X such that Ran(g) ⊂ D(A), t ∈ R, and
h ∈ R∗ that

1
h
[c(t + h)g(t + h) − c(t)g(t)]
=

1
h
[c(t + h)g(t + h) − c(t + h)g(t) + c(t + h)g(t) − c(t)g(t)]

= c(t + h)1
h
[g(t + h) − g(t)] + 1

h
[c(t + h) − c(t)]g(t)

= c(t)1
h
[g(t + h) − g(t)] + 1

h
[c(t + h)g(t) − c(t)g(t)]

+ [c(t + h) − c(t)]1
h
[g(t + h) − g(t)]
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and hence that
1
h
[α(t + h)g(t + h) − α(t)g(t)] − α(t)g′(t) + β(t)Ag(t)
= α(t)


1
h
[g(t + h) − g(t)] − g′(t)


+

1
h
[α(t + h)g(t) − α(t)g(t)] + β(t)Ag(t)

+ [α(t + h) − α(t)]


1
h
[g(t + h) − g(t)] − g′(t)


+ [α(t + h) − α(t)]g′(t),

1
h
[β(t + h)g(t + h) − β(t)g(t)] − β(t)g′(t) − α(t)g(t)
= β(t)


1
h
[g(t + h) − g(t)] − g′(t)


+

1
h
[β(t + h)g(t) − β(t)g(t)] − α(t)g(t)

+ [β(t + h) − β(t)]


1
h
[g(t + h) − g(t)] − g′(t)


+ [β(t + h) − β(t)]g′(t).

This implies that

(R → X, t → α(t)g(t)), (R → X, t → β(t)g(t))
are differentiable with derivatives

(R → X, t → α(t)g′(t) − β(t)Ag(t)), (R → X, t → β(t)g′(t) + α(t)g(t)),
respectively. Application of the latter to v gives for t ∈ R,

v ′(t)= β(t)α(t)b(t) + α(t)
 A

It

α(τ)b(τ) dτ − α(t)β(t)b(t) + β(t)A
 A

It

β(τ)b(τ) dτ

= α(t)
 A

It

α(τ)b(τ) dτ + β(t)

It

β(τ)Ab(τ) dτ

= α(t)
 A

It

α(τ)b(τ) dτ + β(t)
 A

It

β(τ)Ab(τ) dτ,

where


denotes weak integration in X , and that

v ′′(t)= α(t)α(t)b(t) − β(t)A
 A

It

α(τ)b(τ) dτ + β(t)β(t)Ab(t) + α(t)

It

β(τ)Ab(τ) dτ

= α(t)α(t)b(t) + β(t)β(t)Ab(t) − β(t)A
 A

It

α(τ)b(τ) dτ + α(t)A
 A

It

β(τ)b(τ) dτ

= b(t) − Av(t).
�

VII. CONCLUSION

Our result that the governing operator is a bounded function of the classical local operator for
scalar-valued functions should be generalizable to vector-valued case. Our notable result that the
governing operator AC of the peridynamic wave equation is a bounded function of the classical gov-
erning operator has far reaching consequences. It enables the comparison of peridynamic solutions
to those of classical elasticity. The remarkable implication is that it opens the possibly of defining
peridynamic-type operators on bounded domains as functions of the corresponding classical oper-
ator. Since the classical operator is defined through local boundary conditions, the functions inherit
this knowledge. This observation opens a gateway to incorporate local boundary conditions into
nonlocal theories, which has vital implications for numerical treatment of nonlocal problems. This
is the subject of our companion papers.2,3

We expect that the expansions in Theorems 22 and 24 can be used for obtaining the large
time asymptotic of solutions of the nonlocal wave equation. In the classical case, as expected, we
observe the propagation of waves along characteristics. In the nonlocal case, we observe oscillatory
recurrent wave separation. We think that this phenomenon is worth investigating. On the other hand,
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we observe that discontinuity remains stationary in the nonlocal case, whereas, it is well-known that
discontinuities propagate along characteristics. We hold that this fundamental difference is one of
the most distinguishing features of PD. In conclusion, we believe that we added valuable tools to the
arsenal of methods to analyze nonlocal problems.
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