
 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

  

TOBB UNIVERSITY OF ECONOMICS AND TECHNOLOGY 

GRADUATE SCHOOL OF ENGINEERING AND SCIENCE 

 

 

GRADUATE SCHOOL OF ENGINEERING AND SCIENCE 

PHD THESIS 

Duygu AGHAZADEH 

OPTIMIZATION MODELS AND HEURISTIC SOLUTION METHODS FOR 

THE INTEGRATED FLEET SIZING AND REPLENISHMENT PLANNING 

PROBLEM WITH CANDIDATE DELIVERY PATTERNS 

Industrial Engineering Department 

 

 

 

 

Anabilim Dalı : Herhangi Mühendislik, Bilim 

Programı : Herhangi Program 

 

Supervisor: Assoc. Prof. Dr. Kadir ERTOGRAL 

SEPTEMBER 2023 





iii 

 

 

 

 

THESIS STATEMENT 

I hereby declare that all information in this document has been obtained and presented in 

accordance with academic rules and conduct, I have fully cited and referenced all material 

and results that are not original to this work. 

.  

Duygu AGHAZADEH 

                                                                                                                 SIGNATURE 

 

  



 

 



 

v 

 

ÖZET 

Doktora Tezi 

"ADAY TESLİMAT PATERNLERİ İLE ENTEGRASYONLU FİLO 

BÜYÜKLÜĞÜ VE İKMAL PLANLAMA PROBLEMİ İÇİN OPTİMİZASYON 

MODELLER VE SEZGİSEL ÇÖZÜM YÖNTEMLERİ" 

Duygu AGHAZADEH 

 

TOBB Ekonomi ve Teknoloji Üniveritesi 

Fen Bilimleri Enstitüsü 

Endüstri Mühendisliği Anabilim Dalı 

 

Doç. Dr. Kadir ERTOĞRAL 

Tarih: Eylül 2023 

Bu tez çalışmasında entegre filo büyüklüğü belirleme ve ikmal planlaması problemi 

için matematiksel modeller üretilip, farklı çözüm yöntemleri önerilmiştir. Tezin ilk 

bölümünde, önceden belirlenmiş ikmal frekansları ve satıcı yönetimi politikası altında 

ikmal planlaması ve filo büyüklüğünün belirlenmesi amacıyla bir model 

oluşturulmuştur. Bahsedilen modelin çözümü için iki farklı meta sezgisel çözüm 

tekniği, Yaklaşık Dinamik Programlama ve Problem Alanı Arama, önerilip, gerçek 

hayat verilerinden esinlenerek üretilen veri setleri üzerine test edilmiştir. İkinci 

bölümde ise, ilk bölümdeki modelin daha genelleştirilmiş hali ele alınarak yeni bir 

bakış açısıyla matematiksel bir model geliştirilip, sezgisel çözüm yöntemleri 

önerilmiştir. Bu bölümde önceden belirlenmiş tekrarlanan ikmal frekansları yerine 

ikmal paternleri ele alınmıştır. Ek olarak, talep sezonsallığı ve araç kiralama 

opsiyonları göz önünde bulundurulmuştur. Problemi çözmek için Sabitle ve optimize 

et sezgiselinin üç farklı versyonu tasarlanıp, üretilen veriler üzerine test edilmiştir. 

Sonuçların kalitesi ve çözüm süreleri önerilen çözüm tekniklerinin etkili olduğunu 

göstermiştir.
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ABSTRACT 

Doctor of Philosophy 

OPTIMIZATION MODELS AND HEURISTIC SOLUTION METHODS FOR THE 

INTEGRATED FLEET SIZING AND REPLENISHMENT PLANNING 

PROBLEM WITH CANDIDATE DELIVERY PATTERNS 

Duygu AGHAZADEH 

 

TOBB University of Economics and Technology 

Institute of Natural and Applied Sciences 

Industrial Engineering Science Programme 

 

Supervisor: Assoc. Prof. Dr. Kadir ERTOGRAL 

Date: September 2023  

In this thesis work, two mathematical models were developed to formulate two basic 

and extended versions the integrated fleet sizing and replenishment planning problem, 

and various solution methods were proposed. In the first section of the thesis, a model 

was created for replenishment planning and fleet size determination under pre-defined 

replenishment frequencies and vendor management policy. For solving the mentioned 

model, two different metaheuristic solution techniques, namely Approximate Dynamic 

Programming, and Problem Space Search, were proposed and tested on datasets 

inspired by real-life data. In the second section, a more generalized version of the 

model in the first section is considered, and a mathematical model is developed from 

a new perspective, with intuitive solution methods proposed. Replenishment patterns 

were considered instead of pre-defined recurring replenishment frequencies. 

Additionally, demand seasonality and vehicle renting options were taken into account. 

To solve the problem, three different versions of the Fix and Optimize heuristic were 
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 designed and tested on generated data. The quality of the results and solution times 

demonstrated the effectiveness of the proposed solution techniques. 

Keywords: Replenishment planning, Fleet sizing, Heuristic methods, Meta-heuristic 

methods
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1 INTRODUCTION 

This thesis addresses two notable challenges within the realm of fleet sizing and 

replenishment planning. The first and second sections suggest simple and extended 

versions of the problem with mathematical models and metaheuristic solution 

techniques for the solution of integrated fleet sizing and replenishment problem when 

a set of predetermined delivery frequencies is available. Within this context, our focus 

lies on the VMI framework, wherein the distributor or supplier has the freedom to 

decide delivery timing and quantities. The implementation of a VMI program is a 

common practice and it offers numerous advantages for all participants in the supply 

chain. 

Logistics costs are significantly affected by three main factors: the ownership cost of 

the fleet, the routing cost of vehicles, and inventory related costs. Fleet ownership cost 

is contingent upon fleet size and composition which are strategic decisions. On the 

other hand, routing costs are the outcome of daily routing plans based on assignments 

of vehicles to customers. Hence, the composition of the fleet plays a pivotal role in 

optimizing logistics costs. Thus, finding optimal or highly efficient solutions for the 

strategic problems of fleet sizing and composition becomes a critical decision in the 

realm of logistics. This strategic problem must consider routing and inventory 

replenishments in an aggregate manner, which are operational problems. This 

framework is what we considered in the models suggested in this thesis. 

 In Dastjerd & Ertogral (2019) [14] we stated that optimizing a distribution system is 

dependent on optimizing its cost components as a whole. Hence, the objective function 

for the suggested problem includes fixed replenishment, inventory holding, routing, 

and vehicle ownership costs. We aim at determining the fleet size and composition 

along with assigning customers to a specific vehicle-frequency, or vehicle-delivery 

pattern, combination. In the first section, we tackle the same problem as the one in 

Dastjerd & Ertogral (2019) [14], and we both suggest a mathematical model and the 

following two different heuristic solution methods; 

1. Approximate Dynamic Programming (ADP) with fix and optimize heuristic
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2. Problem Space Search (PSS) with fix and optimize heuristic 

In the second part of the thesis, we tackle a more extensive variation of the issues 

discussed in the first section. Initially, we constructed a mixed integer programming 

model to manage challenges encompassing the integration of fleet sizing and 

replenishment planning, all while taking into account predetermined delivery 

frequencies. The assumptions were made that demands from customers dispersed 

geographically were constant and not influenced by seasons. Also assumed is that the 

candidate delivery patterns are regular and repetitive. The replenishment procedures 

were executed utilizing a diverse array of owned vehicles, with the cost of routing 

determined by the number of customers replenished via specific vehicle types, delivery 

frequencies, and the per-kilometer cost of each assigned vehicle type. 

Transitioning to the issue explored in the thesis's subsequent section, it centers around 

an assemblage of stores spread across a clearly define ed geographic region. In this 

context, the demand for these stores is consistent but demonstrates seasonal patterns. 

The fleet employed consists of both owned and rented heterogeneous trucks. The 

approximation of routing costs is accomplished through clustering, a technique that 

involves allocating stores to seed points. The replenishment processes are executed 

utilizing appropriate delivery patterns designed not only to fulfill store demands but 

also to minimize the comprehensive expenses associated with transportation, delivery 

pattern allocation (inventory costs), vehicle ownership/rental, and routing. 

 As solution method, three versions of fix and optimize heuristic are suggested: 

1. FO with store-based subproblems 

2. FO with cluster-based subproblems 

3. FO with delivery day-based subproblems 

As it is obvious from the name of the FO versions, they differ in the subproblem 

generation criteria.  

We give motivation, related literature, problem definition, steps for solution 

techniques, and numerical analysis for each section in the subsequent parts of the 

thesis.
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2 BASIC PROBLEM WITH SIMPLE DELIVERY PATTERNS 

2.1 Introduction 

Optimizing the supply chain is of utmost importance as it leads to cost reduction for 

both businesses and customers, fostering win-win situations. In today's ever-changing 

and uncertain business landscape, companies require robust systems that can adapt 

dynamically. As part of effective supply chain management practices, companies also 

prioritize reducing logistics-related costs. Therefore, the design of the distribution 

system must ensure that logistics operations costs are minimized while maintaining an 

acceptable service level. 

According to Taleizadeh et al. (2020) [52], it is essential to acknowledge that the best 

course of action for one side, either the supplier or the consumer, may not always align 

with the other. Consequently, a systematic approach is needed to address this issue. 

Vendor Managed Inventory (VMI) is one such systematized approach that offers 

benefits to both suppliers and customers in the supply chain. The concept of VMI 

emerged from a study by John (1958) [29], which debated who should be responsible 

for maintaining inventory. VMI is a well-known system where the supplier determines 

the timing and quantity of deliveries, while ensuring that the customer's inventory 

remains within specified minimum and maximum limits. This provides suppliers with 

better demand information and enhances operational efficiency in distribution while 

significantly reducing inventory control costs for customers. 

In the problems and models, we tackle in the thesis, we focus on the VMI setting, 

where the distributor or supplier has the freedom to choose the timing and quantity of 

deliveries. Implementing a VMI program yields numerous advantages for the supply 

chain and all its participants. 

Two significant components of logistics costs are the fleet ownership cost and routing 

cost of vehicles. Fleet ownership cost depends on the fleet size and composition, 

making it a strategic decision. On the other hand, routing costs result from daily routing 

plans based on customer-vehicle assignments. Therefore, an effective fleet
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 composition greatly influences the optimization process to minimize logistics cost 

significantly. Hence, arriving at optimal or near-optimal solutions for the strategic fleet 

sizing and composition problem becomes a crucial logistical decision. 

Strategic fleet sizing primarily focuses on choosing the appropriate fleet composition 

and size to increase the firm's profitability. According to Koç et al. (2016) [30], fleet 

sizing decisions take various factors into account, including the types and quantity of 

vehicles to be owned, which are influenced by market considerations such as shipping 

costs, rates, and expected demand. 

This section of the thesis introduces two different solution algorithms for the integrated 

fleet sizing and replenishment planning problem, namely approximate dynamic 

programming (ADP) and Problem Space Search (PSS) metaheuristic. ADP algorithm 

employs a Fix and Optimize (FO) method to approximate the objective function value 

at each iteration of the dynamic programming for the partial problem. We adopt the 

model suggested in Dastjerd & Ertogral (2019) [14] where the authors proposed a fix 

and optimize heuristic for the same problem. However, in this thesis, we present an 

enhanced solution approach, framing them as an ADP and a problem space search 

heuristic. 

The method employed in this research involves a fix and optimize-based approximate 

dynamic programming approach, supplemented by a final improvement step. ADP is 

a well-established technique used in various problems, as discussed in detail in the 

literature. One of the key advantages of ADP is its ability to significantly reduce 

computational time by solving partial problems in a forward recursion formulation 

using problem-specific or general heuristics instead of seeking optimal solutions. In 

our approach, we use fix and optimize as the heuristic for the partial problems in the 

ADP, and we further enhance efficiency with a look-ahead strategy. Additionally, an 

improvement stage is executed at the end of the process. 

The other proposed solution method, called Problem Space Search (PSS), introduces 

a novel metaheuristic technique that differs from the conventional approach of 

exploring the "solution space." Instead of solely searching for solutions within a 

designated solution space, PSS adopts a problem space search approach. In each 

iteration of a problem-specific heuristic, multiple solutions are evaluated by executing 

specific algorithms multiple times. Each execution uses temporarily perturbed data or 
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perturbed heuristic parameters as input. This novel strategy aims to create a distinct 

search space within the problem space, leading to more efficient and effective 

solutions. 

The core concept behind PSS is to create artificial "neighbor" problems by temporarily 

modifying the input data of the original problem or adjusting parameters in the 

embedded heuristic. The main idea is that by finding heuristic solutions to similar 

problems, there is a higher chance of obtaining solutions that are close to the optimal 

solution for the original problem. PSS aims to broaden the exploration scope by 

considering variations of the original problem through data perturbation, leading to the 

discovery of potentially high-quality solutions within a wider problem space. Our 

version of PSS incorporates a fixed and optimize heuristic. In PSSI, we perturb the 

cost data, while in PSSII, we randomize the order of subproblems tackled in the fix 

and optimize process. We generate multiple instances with distinct characteristics and 

evaluate the performance of the proposed metaheuristic through a numerical study 

using the generated dataset.  

The structure of this part is as follows: the subsequent section reviews the relevant 

literature, while Section 2.3 provides an explanation of the mathematical model and 

the problem. The steps for the Approximate Dynamic Programming and Problem 

Space Search methods are outlined in Sections 2.4 and 2.5. Section 2.6 delves into the 

dataset's structure and presents the performance analysis of the heuristic. Finally, in 

Section 2.7, we offer our concluding remarks on this section. 

2.1.1 Motivation 

As discussed in introduction section, inventory and transportation costs play a key role 

in minimizing the total cost of a distribution system. On the other hand, having an 

efficient distribution system in terms of costs and performance, needs caring for all of 

the components of the system as a whole. Hence, this part of the thesis focuses on a 

problem which integrates fleet sizing and inventory decisions in a single problem and 

aims at bringing quality solution to this novel problem. 
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2.2 Literature 

In this section, we present several pertinent research works. We provide an overview 

of the literature, which can be categorized into five main focus groups: fleet sizing, 

delivery problems with specified frequencies, studies related to approximate dynamic 

programming, Problem Space Search and applications of the fix and optimize method. 

2.2.1 Fleet sizing problem 

In this section, we discuss various studies directly related to fleet sizing. Desrochers 

& Verhoog (1991) [15] address the challenge of replenishing customers with known 

demands from a central depot. They tackle both fleet composition and routing 

decisions, utilizing a version of the saving type heuristic based on consecutive route 

fusions. Sayarshad & Ghoseiri (2009) [42] explore a novel mathematical formulation 

for fleet dimension optimization and freight car assignment. Their proposed solution 

approach relies on simulated annealing, which employs three techniques to escape 

local optima: inferior solutions, solution space neighborhood search, and acceptance 

probability. 

Liu et al. (2009) [34] focus on the fleet sizing and vehicle routing problem involving 

a set of nonhomogeneous vehicles. They present a heuristic based on a genetic 

algorithm, demonstrating its effectiveness on benchmark instances compared to 

existing literature solutions in terms of solution quality and computation times. Żak et 

al. (2011) [57] tackle the fleet sizing problem in a road freight transportation firm with 

a set of heterogeneous vehicles. Their two-phased heuristic employs innovative 

software to produce a collection of Pareto-optimal results, which the decision maker 

then evaluates using their preference model. 

Aziez et al. (2022) [4] propose methods to enhance transportation operations' 

efficiency in hospitals by utilizing automated guided vehicles to save labor and 

improve efficiency. They develop a mathematical formulation and a powerful 

metaheuristic for this purpose. Sun et al. (2021) [51] address an operational fleet 

dimensioning problem that considers the cost of fuel. Their problem is a modified 

version of fleet dimensioning and mix vehicle routing, and they introduce the economy 

traveling distance (ETD) method to determine the optimal travel distances for each 

type of vehicle, taking into account their fuel consumption rates.  
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2.2.2 Delivery with given frequencies 

Speranza & Ukovich (1994) [47] explore the distribution problem involving candidate 

frequencies, accommodating both indivisible and divisible demand scenarios through 

their integer and mixed integer formulations. They propose a two-step heuristic using 

modified dominance principles as the solution strategy. In a separate work, Speranza 

& Ukovich (1996) [46] utilize a branch and bound approach to tackle the distribution 

of various commodities from a single origin to multiple consumers based on preset 

replenishment schedules. 

Bertazzi et al. (1997) [8] present a strategy for resolving a problem with predefined 

frequencies, where items are delivered from a single origin to multiple destinations, 

considering transportation and inventory costs, similar to our study. However, they use 

continuous frequencies in their replenishment decision-making approach, 

distinguishing it from our case. Additionally, they do not account for fixed costs per 

delivery. Their sequential heuristic method involves building a mixed integer 

programming model for single link problems and solving a shortest path problem to 

make decisions on frequency-truck assignment and cargo transportation percentage. 

In another study, Bertazzi & Speranza (1999) [7] analyze a different situation 

involving several products, one origin, a few intermediary nodes, and a destination, 

with predetermined candidate delivery frequencies. They propose four distinct 

heuristic techniques, including dividing sequences into links and handling each link 

independently, applying the same shipping percentages to all links, and two heuristics 

based on discrete versions of the EOQ formulations. They also explore a dynamic 

programming-based technique, considering links as stages and the collection of 

delivery frequencies on preceding links as states. 

Examining the problem of transporting multiple items from an origin to a single 

destination at a predefined frequency, Bertazzi et al. (2000) [9] employ both heuristic 

and exact methods. The heuristic methods are developed based on the EOQ formula, 

while the exact method involves a modified version of the branch and bound algorithm. 

In a more complex production-distribution network under a Vendor Managed 

Inventory (VMI) setting, Bertazzi et al. (2005) [6] aim to regularly produce and 

distribute products using a fleet of trucks. They propose hierarchic heuristics, solving 
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the production and distribution subproblems consecutively, with the production results 

influencing the distribution phase. 

2.2.3 Approximate dynamic programming 

Approximate Dynamic Programming (ADP) is introduced as an algorithmic technique 

to address the issue of the curse of dimensionality, commonly used in stochastic 

problems. ADP employs a heuristic approach to approximate the objective function 

value. The literature covers various problems effectively solved by ADP, including 

scheduling problems, fleet management problems, knapsack problem variations, 

vehicle routing problems, replenishment planning problems, and allocation problems. 

Bertsimas & Demir (2002) [10] propose an ADP approach for the multidimensional 

knapsack problem, estimating the objective function value using non-parametric and 

parametric techniques. They claim that their heuristic approach provides high-quality 

solutions, outperforming ready-to-use software like CPLEX in terms of solution 

quality and computational time. Hua et al. (2006) [25] consider the convex Quadratic 

Knapsack Problem (QKP) and offer two approaches to estimate the objective function 

value, achieving high-quality solutions for large-scale QKPs. Perry & Hartman (2009) 

[37] use ADP to solve a dynamic, stochastic knapsack problem, combining simulation 

with deterministic dynamic programming to solve longer-term problems effectively. 

Topaloglu (2005) [54] employs an ADP-based technique to optimize distribution 

activities for a business, involving production across multiple facilities and distribution 

to various locations. They utilize concave approximations to estimate the objective 

function value, demonstrating the effectiveness of their ADP version. Simao et al. 

(2009) [45] create a model for a large truckload motor carrier company in the US, 

using Monte Carlo simulation and machine learning to approximate the value function 

and accurately assess the marginal value of different types of drivers. 

ADP is also applied in other areas, such as the surgical scheduling problem, patient 

admission problem, and machine scheduling problem (Astaraky & Patrick (2015) [3], 

Silva & de Souza (2020) [44], Hulshof et al. (2016) [27], and Ronconi & Powell (2010) 

[39], respectively). 
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2.2.4 Problem space search metaheuristic 

Storer et al. (1992) [50] introduced the Problem Space Search (PSS) metaheuristic, 

which involves applying a problem-specific heuristic repeatedly in the problem space 

using local search. PSS has been widely adopted in various studies. For example, 

Naphade et al. (1997) [35] solved the resource-constrained scheduling problem using 

PSS, achieving results comparable to the branch and bound technique. Leon & 

Ramamoorthy (1997) [33]applied PSS to the flexible flow line scheduling problem 

and demonstrated its effectiveness in this domain. Albrecht et al. (2013) [2] utilized 

PSS to address the rail network rescheduling problem, generating numerous different 

train timetables. Storer et al. (1996) [49] used PSS for the number partitioning 

problem, noting that while it may require longer solution durations, the quality of 

solutions improves. PSS can be combined with various heuristics, such as the Lagrange 

relaxation based heuristic used by Jeet & Kutanoglu (2007) [28] to solve the 

generalized assignment problem. Despite the wide applications of PSS in various 

problem domains, there hasn't been any prior study suggesting the use of PSS 

metaheuristic for the fleet sizing problem and employing the fix and optimize (FO) 

technique as the problem-specific heuristic. This research introduces an innovative 

approach to address the integrated replenishment planning and fleet sizing problem 

with predetermined replenishment frequencies, considering vehicle ownership, 

inventory, and routing costs. We apply the FO heuristic in two versions of PSS to solve 

the problem presented in Dastjerd & Ertogral (2019) [14]. Our main objective is to 

build upon and advance the existing solutions proposed in their previous research. By 

incorporating the PSS metaheuristic with FO, we aim to enhance the effectiveness, 

efficiency, and overall quality of the solutions, refine existing methodologies, and 

potentially introduce novel approaches to achieve more robust and improved solutions 

in the field of fleet sizing and replenishment planning. 

2.2.5 Fix and optimize heuristic 

Pochet & Wolsey (2006) [38] introduced the multi-level capacitated lot size problem 

and developed the "exchange heuristic," which may have been the origin of the Fix 

and Optimize (FO) method. When existing solvers proved inadequate in delivering 

high-quality or optimal solutions within reasonable computing timeframes, researchers 
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turned to mixed integer programming-based heuristics (Tanksale & Jha (2020) [53]). 

FO emerged as an effective solution method, producing excellent solutions within 

reasonable timeframes, and has been applied to various lot-sizing problem variations, 

such as capacitated lot sizing with setup carryover (Gören & Tunalı (2015) [22], Chen 

(2015) [13]), cooperative lot-sizing (Drechsel & Kimms (2011) [17]), and stochastic 

capacitated lot sizing (Helber & Sahling (2010) [23]). 

The versatility of the FO method extends to other problem types as well. Gintner et al. 

(2005) [21] used FO to solve a bus scheduling problem, while Dorneles et al. (2014) 

[16] applied a combination of FO and variable neighborhood search to address high 

school timetabling. Federgruen et al. (2007) [18] utilized FO for solving a multi-

product capacitated lot size challenge. Helber & Sahling (2010) [23] employed the FO 

method for the multi-level capacitated lot sizing problem, and Neves-Moreira et al. 

(2018) [36] used it for assigning time intervals and creating delivery schedules, 

asserting its superiority over commercial solvers. 

As of our knowledge, no previous work has suggested an ADP-based solution for the 

fleet sizing problem proposed by Dastjerd & Ertogral (2019) [14]. In this study, we 

present a novel solution strategy based on ADP for their problem. Our approach 

involves an enhanced version of classical ADP, incorporating the FO method to 

estimate the objective function value. 

2.3 Problem Definition 

In this section, we outline our problem and present its mathematical formulation. The 

problem involves a group of geographically dispersed customers who make 

deterministic product restocking requests. The main objective is to minimize the total 

annual expenses, which encompass vehicle ownership, routing costs, fixed 

replenishment costs, and inventory holding costs. 

The solution to the problem involves determining the appropriate fleet size and 

composition of vehicles, as well as the optimal replenishment size and schedule for 

each customer. The fleet consists of a set of heterogeneous vehicles with different cost 

parameters and carrying capacities. Replenishments are conducted based on a 

predefined set of candidate frequencies, which are determined by the number of weeks 

between deliveries and the specific delivery day of the week. Customers' inventories 
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can be restocked on a weekly, biweekly, thrice-weekly, or quarto-weekly basis, on any 

of the five weekdays. This results in 20 weekly base frequencies (5 weekdays × 4 

possible delivery intervals). Additionally, we consider a daily frequency, resulting in 

a total of 21 distinct possible frequencies, which are listed in Table 2.1 along with their 

respective labels. 

 

Table 2.1: Frequency labels. 

Label Frequency 

1 Daily 

2-6 Weekly 

7-11 Biweekly 

12-16 Thrice-weekly 

17-21 Quarto-weekly 

 

Some of the frequencies frequently overlap, therefore it is important to record them 

for avoiding both double counting of deadheading costs and accurately depicting 

capacity limits on coinciding days. For example, considering frequencies that cover 

Thursdays, labels of the coinciding frequencies are 5, 10, 15, and 20, plus the daily 

frequency. 

We assume the following operational challenges as they pertain to our problem: 

1. Each customer's inventory must be restocked using a single truck based on a 

single delivery frequency, 

2. Only a certain maximum number of customers may be visited on a given day, 

and,  

3. We took into account the customer's location when allocating consumers to a 

route. That is if the problem has clustered customer structure, two customers 

on different clusters cannot be delivered with the same frequency and vehicle.  

One of the distinctive features of the mathematical model is that it adopts an 

approximation method in determining the routing costs. The routing cost is estimated 

by the product of the average cost of travelling from one consumer to another and the 
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number of consumers visited on a specific route. Since the main focus of the problem 

is fleet sizing and routing cost is an operational cost that may vary on a daily basis, 

taking routing cost as an approximate value was appropriate. Besides, this 

simplification saves significant computational time in terms of solution durations and 

makes it possible to build the problem without the need for exact routing data.  

We provide an overview of the mixed integer programming model for the problem 

below. The notations used are shown below: 

 

Sets: 

𝐼: Customer set 

𝑉: Vehicle set  

𝐹: Frequencies set, 𝐹= {1, 2, ..., 21} 

𝐹𝑗: Coinciding frequencies set, ∀𝑗 = 1, … , 𝑛 

𝐷: Set of days of the week, 𝐷 = {1, 2, …, 5} 

𝐻: Set of weeks per year, 𝐻 = {1, 2, …, 52} 

 

Parameters: 

𝑁: Number of coinciding frequency sets 

𝑚: Number of customers 

𝑟𝑣: Approximate routing cost between two customers for vehicle 𝑣  

gv: Dead heading cost for vehicle 𝑣 

𝑎𝑣 : Annual ownership cost of vehicle 𝑣 

𝜆𝑖𝑓: Demand of customer 𝑖 at frequency 𝑓 

ℎ: Annual inventory holding cost per unit of a product 

𝑘𝑖𝑓: Fixed cost of replenishing customer i using frequency f 

𝑠𝑚𝑎𝑥: Maximum number of customers that can be visited during the day 
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𝑐𝑣: Capacity of vehicle 𝑣 

M: A big number 

𝑝𝑓: Total number of annual replenishments for frequency f 

𝑡𝑖𝑘: Incidence matrix of customers 𝑖 and 𝑘 (customers 𝑖 and 𝑘 can be in the same route 

if 𝑡𝑖𝑘=2, and cannot be in the same route when 𝑡𝑖𝑘=1) 

 

Decision variables: 

𝑥𝑖𝑣𝑓: 1 if customer 𝑖 is replenished by vehicle 𝑣 and frequency 𝑓, 0 otherwise. 

𝑉𝑣: 1 if vehicle 𝑣 is used, 0 otherwise. 

𝐿𝑣𝑓: 1 if any customer is assigned to vehicle 𝑣 and frequency 𝑓, 0 otherwise. 

𝑅𝑑𝑣ℎ: 1 if any customer assigned is to vehicle 𝑣 and frequency 𝑓 on the day 𝑑 in 

week ℎ, 0 otherwise 

𝐶𝑣𝑓: Number of customers assigned to vehicle 𝑣 and frequency 𝑓. 

 

Mathematical model 

Min.   ∑ 𝑔𝑣𝑝1𝐿𝑣1 +𝑣∈𝑉 ∑ ∑ ∑ 𝑔𝑅𝑑𝑣ℎ𝑣∈𝑉ℎ∈𝐻𝑑∈𝐷  +∑ ∑ 𝑟𝑣𝑓∈𝐹𝑣∈𝑉 . 𝑝𝑓 . 𝐶𝑣𝑓  +

∑ 𝑎𝑣𝑉𝑣 +𝑣∈𝑉 ∑ ∑ ∑ ℎ 𝑋𝑖𝑣𝑓

𝜆𝑖𝑓

2𝑓∈𝐹𝑣∈𝑉𝑖∈𝐼  + ∑ ∑ ∑ 𝑘𝑖𝑓𝑋𝑖𝑣𝑓𝑓∈𝐹𝑣∈𝑉𝑖∈𝐼  

Subject to 

(2.1) 

 

 

∑ ∑ 𝑋𝑖𝑣𝑓𝑓∈𝐹𝑣∈𝑉 =1 ∀ 𝑖 ∈ 𝐼 (2.2) 

∑ 𝑋𝑖𝑣𝑓𝑖∈𝐼 = 𝐶𝑣𝑓 ∀ 𝑣 ∈ 𝑉, ∀𝑓 ∈ 𝐹 (2.3) 

𝑀𝐿𝑣𝑓 ≥ 𝐶𝑣𝑓  ∀𝑣 ∈ 𝑉, 𝑓 ∈ 𝐹 (2.4) 

𝐿𝑣𝑓 ≤ 𝐶𝑣𝑓  ∀𝑣 ∈ 𝑉, 𝑓 ∈ 𝐹 (2.5) 

𝑀 𝑉𝑣  ≥ ∑ ∑ 𝑋𝑖𝑣𝑓𝑓∈𝐹𝑖∈𝐼  ∀ 𝑣 ∈ 𝑉 (2.6) 
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∑ 𝜆𝑖𝑓𝑋𝑖𝑣𝑓𝑖∈𝐼 ≤ 𝑐𝑣 ∀𝑣 ∈ 𝑉, ∀𝑓 ∈ 𝐹 (2.7) 

∑ ∑ 𝜆𝑖𝑓𝑋𝑖𝑣𝑓𝑓∈𝐹𝑗𝑖∈𝐼 ≤ 𝑐𝑣 ∀ 𝑣 ∈ 𝑉, ∀𝑗 = 1, … , 𝑛 (2.8) 

∑ 𝐶𝑣𝑓 𝑓∈𝐹𝑗
≤  𝑠𝑚𝑎𝑥  ∀ 𝑣 ∈ 𝑉, ∀𝑗 = 1, … , 𝑛 (2.9) 

∑ 𝑋𝑖𝑣𝑓𝑓∈𝐹𝑗
+∑ 𝑋𝑘𝑣𝑓𝑓∈𝐹𝑗

≤ 𝑡𝑖𝑘 ∀𝑣 ∈ 𝑉, 𝑖 ∈ 𝐼, 𝑘 ∈ 𝐼, ∀𝑗 = 1, … , 𝑛 (2.10) 

𝑅𝑑𝑣ℎ ≥ 𝐿𝑣𝑓-𝐿𝑣1 ∀𝑣∈𝑉, d ∈ 𝐷, f∈𝐹𝑗, h∈H (2.11) 

𝑋𝑖𝑣𝑓 ∈ {0,1} ∀ 𝑖 ∈ 𝐼, ∀𝑣 ∈ 𝑉, ∀𝑓 ∈ 𝐹 (2.12) 

𝐿𝑣𝑓 ∈ {0,1}   ∀𝑣 ∈ 𝑉, ∀𝑓 ∈ 𝐹 (2.13) 

𝐶𝑣𝑓 ∈ 𝑍≥0  ∀𝑣 ∈ 𝑉, ∀𝑓 ∈ 𝐹 (2.14)  

𝑉𝑣 ∈ {0,1}   ∀𝑣 ∈ 𝑉 (2.15) 

𝑅𝑑𝑣ℎ ∈ {0,1}  d ∈ 𝐷,v ∈ 𝑉, h∈H (2.16) 

 

The constraint (2.3) assures that all the demands are satisfied. The number of 

consumers being served by a specific frequency and vehicle are calculated using (2.2). 

The value of 𝐿𝑣𝑓 is calculated using constraints (2.4) and (2.5). Constraint (2.6) decides 

whether a vehicle of type 𝑣 is used. Vehicle capacity limitations are imposed to the 

model by constraints (2.7) and (2.8). The first one assures that the trucks are loaded 

with the products occupying a space which is less than or equal to the carrying capacity 

of each vehicle. The latter assures the same on coinciding frequencies. The constraint 

(2.9) sets 𝑠𝑚𝑎𝑥 as the maximum number of clients that may be visited on a route each 

day. Some customers are not eligible to be on the same route simultaneously due to 

their geographical location. This restriction is reflected by constraint (2.10). The 

redundant deadheading calculations are omitted by the constraint (2.11). The 

remaining,2.12 to 2.16 declare the domain of the decision variables. 

For further details about the mathematical formulation one can see Dastjerd & Ertogral 

(2019) [14].  
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2.4 Approximate Dynamic Programming Heuristic 

In this section, we propose a heuristic solution for the problem based on Approximate 

Dynamic Programming (ADP). ADP encompasses a wide range of computational and 

modeling techniques used to address complex decision problems with large 

dimensions. ADP is particularly useful in overcoming the well-known issue of the 

dimensionality curse, which hinders the application of Bellman's equation. The use of 

an approximate value function is fundamental in ADP to facilitate decision-making. 

To estimate the objective function's value at each ADP iteration, we employ the Fix 

and Optimize (FO) heuristic. In a prior work by Dastjerd & Ertogral (2019) [14], we 

developed the original FO heuristic and applied it to the current problem. In the 

subsequent sections, we provide the recursive equation for our proposed ADP 

approach, explain the steps for implementing the FO heuristic, and then outline the 

steps of our suggested ADP methodology. 

2.4.1 Suggested approximate dynamic programming  

2.4.1.1 Formulation of the recursive equation 

ADP, which stands for Approximate Dynamic Programming, is a powerful method 

used to handle large-scale decision-making processes involving discrete time 

multistage optimization. In these problems, there exists a state space 𝑆, and at each 

stage, the system is in a specific state 𝑆𝑡 ∈ 𝑆, from which a decision 𝑥𝑡 can be made. 

After making a decision 𝑥𝑡, the system receives rewards or incurs costs, denoted as 

𝐶𝑡(𝑆𝑡;  𝑥𝑡) , and transitions to a new state 𝑆𝑡 + 1. Consequently, decisions at each state 

are conditionally dependent on all previous states and decisions. As a result, the 

decision made not only affects immediate costs but also influences the environment in 

which future decisions are made, thereby impacting upcoming costs. 

Dynamic programming tackles complex decision-making problems by breaking them 

down into smaller subproblems. The optimal solution for the overall problem is 

achieved by obtaining optimal solutions for each of the subproblems, as outlined in 

Bellman & Kalaba (1957) [5]. 

In our specific scenario, the stages of the dynamic programming formulation 

correspond to the customers (indexed with 𝑖). At each iteration, we determine whether 
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a frequency-vehicle-customer assignment is appropriate for that particular customer or 

not. The decision variable at each stage is denoted as 𝑥𝑖𝑣𝑓, and we must decide whether 

to set 𝑥𝑖𝑣𝑓to 1 or to 0 for each customer 𝑖. Setting 𝑥𝑖𝑣𝑓to 1 for a specific (𝑣, 𝑓) pair 

implies that 𝑥𝑖𝑣𝑓 is set to 0 for all other (𝑣, 𝑓) options for customer 𝑖 since each 

customer can only be assigned to a single vehicle and frequency pair. When making 

decisions about the 𝑥𝑖𝑣𝑓 values, we consider all available vehicle capacity options for 

each frequency for the current customer 𝑖, which constitutes the state in dynamic 

programming terminology. At each stage, when we are deciding the 𝑥𝑖𝑣𝑓value for a 

customer, the state of the system consists of the remaining capacity for each vehicle-

frequency pair in terms of both remaining volume (𝐶𝑎𝑝𝑖) and the remaining number 

of daily customers (𝐶𝑣𝑓) that can be assigned to it. This state, also referred to as 

capacity state, 𝐶𝑎𝑝𝑖, is naturally determined by the decisions already made before the 

current stage. In our implementation, we utilize a mathematical model to determine 

the state of the system at each stage. 

At each stage, we must calculate the incremental cost of allocating or not allocating 

the current customer to a vehicle-frequency pair, given that the capacity state is 𝐶𝑎𝑝𝑖. 

The most crucial factor is the estimated solution value of the objective function when 

there are 𝑖 remaining consumers, and 𝐶𝑎𝑝𝑖 represents the capacity state for customer i 

at stage 𝑖. Taking into account these dependencies and definitions, we present the 

forward recursion equation below: 

Notations: 

𝐶𝑎𝑝𝑖: Available capacity state at each stage for customer 𝑖, 𝑖∈𝐼. 

𝐾(𝑖, 𝐶𝑎𝑝𝑖): Value of optimal objective function of the partial problem for customers 𝑖, 

𝑖 + 1, 𝑖 + 2, … , |𝐼| customers the capacity state 𝐶𝑎𝑝𝑖.  

𝐼(𝑥𝑖𝑣𝑓, 𝐶𝑖): Incremental cost of 𝑥𝑖𝑣𝑓 (equating to 1 or 0), for customer 𝑖∈𝐼, if we have 

capacity state 𝐶𝑎𝑝𝑖. 

𝑓𝑖+1 (𝐶𝑎𝑝𝑖, 𝑥𝑖𝑣𝑓 ): The function that returns the capacity state at customer 𝑖+1, if we 

have capacity state 𝐶𝑎𝑝𝑖 before customer 𝑖 and we take the decision 𝑥𝑖𝑣𝑓 (Setting it to 

1 or 0). 

Forward recursive equation of the problem: 
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𝐾(𝑖, 𝐶𝑎𝑝𝑖)= 𝑚𝑖𝑛
{
𝑥𝑖𝑣𝑓=0 𝑜𝑟 1,𝑣=1,…, 𝑉

𝑓=1,…,𝐹
}

{𝐼(𝐶𝑎𝑝𝑖, 𝑥𝑖𝑣𝑓) +  𝐾 (𝑖 + 1, 𝑓(𝐶𝑎𝑝𝑖, 𝑥𝑖𝑣𝑓))} 

𝐾(𝑁 + 1, 𝐴𝑛𝑦 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑠𝑡𝑎𝑡𝑒) =  0.  

 

Approximate dynamic programming we suggest is founded on an algorithmic 

approach that progresses forward in number of customers. To solve this problem using 

traditional dynamic programming, we would need to identify the exact value function 

𝐾 (𝑖 + 1, 𝑓(𝐶𝑎𝑝𝑖, 𝑥𝑖𝑣𝑓)) for each value of 𝐶𝑎𝑝𝑖 which becomes so complex when the 

data size increases. Hence, instead of calculating the exact value for the objective 

function of the proceeding steps, we try to approximate it through implementation of 

a problem specific heuristic method. In this paper, we employ a Fix and Optimize 

heuristic for solving the partial problem approximately in each iteration of the 

approximate dynamic programming. The results obtained from the Fix and Optimize 

method (FO) is used as the approximate optimal value in place of 𝐾 (𝑖 +

1, 𝑓(𝐶𝑎𝑝𝑖, 𝑥𝑖𝑣𝑓)) in the recursive formula. The problem specific heuristic FO relies on 

breaking the main problem down into smaller and easier sub problems. The details of 

the implemented FO are given below.  

2.4.2 Fix and optimize heuristic 

Fix and optimize is a two-phase heuristic comprising a first phase that generates a 

feasible solution of good quality, followed by a second phase focused on improving 

the solution obtained in the initial phase. The key concept behind this heuristic is to 

solve the main problem by dividing it into sequential partial integer problems. This 

approach reduces solution times while still producing high-quality solutions. In this 

method, the problem is divided into subsets of customers. We will outline the phases 

of the fix and optimize heuristic and provide detailed steps in the following sections. 

During the first phase of the Fix and Optimize (FO) heuristic, the main problem is 

partitioned into smaller subproblems based on a predefined criterion, which, in this 

case, is the customer index. At each iteration, only the variables of one subproblem are 

expressed as integers or binaries, while the variables in the remaining subproblems are 

defined as linear variables or set to fixed values from previous iterations. This process 



 

 

 

18 

continues until all variables become integers, and the final solution is saved for further 

improvement in the next phase. The problem addressed in Phase I at iteration i is 

illustrated in Figure 2.1. 

Integer variables, fixed to 

the values in iteration 𝑖 − 1 

Integer variables, 

optimized in 

iteration 𝑖 

Relaxed variables as 

continuous, optimized in 

iteration 𝑖 

𝐴1 𝐴2 …. 𝐴𝑖−1 𝐴𝑖 𝐴𝑖+1 𝐴𝑖+2 …. 𝐴𝑝 

Figure 2.1:The problem solved at iteration 𝒊 in Phase I. 

The details of phase I of the FO version for our problem are given below; 

 

 Phase I 

    Step 1. Divide the customers into 𝑃 sub groups with equal number of customers, 

or as equal as possible. Divide the decision variables in to 𝑃 sub groups 

corresponding to 𝑃 customer groups. Let 𝐴𝑖 be the set of all binary variables in the 

𝑖𝑡ℎ sub group. 

    Step 2. Set the iteration counter 𝑖 to 1. 

    Step 3. If 𝑖 > 1, Fix the binary variables in 𝐴𝑗 for 𝑗 =  1. . 𝑖 − 1, to the values of 

variables found in iteration 𝑖 − 1. 

    Step 4. Set the variables in 𝐴𝑖 as binary variables.  

    Step 5. Relax the binary variables in 𝐴𝑗 for 𝑗 =  𝑖 +  1, 𝑖 + 2, . . , 𝑃 as linear 

variables.  

    Step 6. Solve the complete model and set 𝑖 = 𝑖 + 1. If 𝑖 < 𝑃 go to step 3. If 𝑖 =

𝑃, STOP. 

In the second phase, the main problem is also divided into the same subproblems as in 

the first phase. The variables in this phase are defined as either integers, or they are set 
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to the fixed values obtained in the previous phase. At iteration 𝑖, we solve the entire 

model with all binary variables fixed to the values from the previous iteration, except 

for 𝐴𝑖, which is considered as an integer and re-optimized. If any improvement is 

observed in the objective function, the algorithm starts the process again. This 

procedure continues until no further improvements are observed. The problem 

addressed in Phase II at iteration 𝑖 is depicted in Figure 2.2: 

Integer variables, fixed to 

the values in iteration 𝑖 − 1 

Integer variables, 

optimized in 

iteration 𝑖 

Integer variables, fixed to 

the values in iteration 𝑖 − 1 

𝐴1 𝐴2 …. 𝐴𝑖 -1 𝐴𝑖 𝐴𝑖+1 𝐴𝑖+2 …. 𝐴𝑝 

Figure 2.2: The problem solved at iteration 𝒊 in Phase II. 

The steps of the second phase of the FO are illustrated below: 

Phase II 

    Step 1. Set the counter 𝑖 to 1. 

    Step 2. Clear the values of all variables in 𝐴𝑖 and re-define them as binaries. 

    Step 3. if 𝑖 >  1 then for 𝑗 =  1, 2, . . , 𝑃 and 𝑗 ≠ 𝑖 set the variable values in 𝐴𝑗 

to values found in iteration 𝑖 − 1. If 𝑖 = 1 then for 𝑗 =  1, 2, . . , 𝑃 and 𝑗 ≠  𝑖 set the 

variable values in 𝐴𝑗 to values found in Phase I. 

    Step 4. Solve the complete model, set 𝑖 =  𝑖 +  1. 

     Step 5. Check the objective value, if the objective value is better than best 

solution so far and 𝑖 <  𝑃, update the best solution as the current solution and go 

to step 1. If no improvement occurred in the current iteration and 𝑖 <  𝑃 go to step 

2. If no improvement occurred in the current iteration and 𝑖 >  𝑃 STOP. 

 

2.4.3 Look ahead strategy for ADP 

During each ADP step, we need to determine the value of 𝑥𝑖𝑣𝑓 for a specific customer 

𝑖, which can either be set to 1 or 0 for each possible vehicle-frequency combination. 

However, as the data size increases, the number of combinations to be checked for 
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determining the value of 𝑥𝑖𝑣𝑓 grows rapidly, leading to lengthy solution times for 

moderate or large-sized problems. To address this issue, we implemented a "look 

ahead" fixation technique, which helped reduce the number of vehicle-frequency pairs 

that need to be checked. The concept behind the fixation technique is to predict the 

𝑥𝑖𝑣𝑓 values for later customers in the dynamic programming stages that are likely to 

be set to 1 in the final solution. As we conduct FO iterations during dynamic 

programming, we monitor the 𝑥𝑖𝑣𝑓 values for later customers, and if they frequently 

assume the value of 1 or a value close to 1, we fix them to 1. By doing so, we save 

significant computational effort since fixing a 𝑥𝑖𝑣𝑓 to 1 for a specific customer 𝑖 and 

(𝑣, 𝑓) pair results in setting the remaining 𝑥𝑖𝑣𝑓 values to 0 for the remaining (𝑣, 𝑓) 

options for that customer. Our algorithm keeps track of the 𝑥𝑖𝑣𝑓 variables in the last 

α% of the FO iterations and if they reach a value of 0.9 or higher in this period, we fix 

them to 1. This optimization helps expedite the computation process and improve the 

efficiency of the overall algorithm. 

2.4.4 Improvement algorithm for ADP 

We propose a two-phase improvement algorithm to further enhance the results 

obtained from ADP with the look ahead strategy. After analyzing the characteristics 

of the solutions generated by ADP, we observed that the significant deviations from 

the optimal or best-bound values are primarily attributed to the excessive utilization of 

vehicles. Since the vehicle ownership charges represent the most substantial cost 

component in our context, assigning an extra vehicle in comparison to the optimal 

solution has a substantial impact on the objective function value. 

The improvement algorithm is designed to focus on optimizing the fleet composition 

and size. In the first phase, we specifically examine solutions where each type of 

vehicle in the ADP solution is incrementally increased and decreased by one, while 

keeping the number of other vehicles fixed. 

Let kv represent the number of vehicles in the solution found by ADP or the best 

solution during the improvement process. The steps of phase I in the improvement can 

be illustrated as follows; 
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Improvement phase I: 

Step 1. Let i=1, and improvement flag = 0, best_solution = The solution from 

ADP. 

Step 2. Fix the ki= ki+1 and fix the other vehicle numbers to their value in the 

best solution so far. Apply ADP. If the solution found is better than the best 

solution so far, let best_solution = the current solution, improvement flag = 1. 

Else go to next step 

Step 3. Fix the ki= ki-1 and fix the other vehicle numbers to their value in the 

best solution so far. Apply ADP. If the solution found is better than the best 

solution so far, let best_solution = the current solution, improvement flag = 1. 

Else go to next step. 

Step 4. Let 𝑖 = 𝑖 + 1. If 𝑖 <  |𝑉| then go to Step 2, else go to next step 

Step 5. If improvement flag = 1 go to Step 1, else STOP and report the 

best_solution. 

 

Improvement phase II: 

In second phase of the improvement algorithm, we check if there is any improvement 

when we replace a vehicle with two smaller size vehicles or with a smaller size vehicle. 

Two neighborhoods are defined as explained below: 

1. Removing two small vehicle and replacing them with a large one 

2. Replacing one large vehicle in the fleet with a small one 

We use the defined neighborhoods for changing the fixed 𝑉𝑣 set on the solution 

obtained after the first improvement phase. The resulting vehicle numbers are used as 

bounds on the number of vehicles that can be used. If the changes in vehicle sets of 

the second phase yields improved solutions compared to the solutions from the first 

phase, the first phase is restarted with the new vehicle composition and the solution is 

updated. Otherwise, the algorithm is terminated and the current best solution is 

reported as the final solution. 
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2.4.5 Pseudo codes of the ADP and improvement algorithm 

The following section shows the ADP pseudocode: 

Notation: 

𝐶: Set of Customers 

𝑉: Set of Vehicles 

𝐹: Set of given frequencies 

𝑃0: Set of (𝑖, 𝑣, 𝑓) indices for which 𝑥𝑖𝑣𝑓 are set to 0 in the previous stages in dynamic 

programming  

𝑃1: Set of (𝑖, 𝑣, 𝑓) indices for which 𝑥𝑖𝑣𝑓 are set to 1 in the previous stages in dynamic 

programming  

𝑃 : Set of (𝑖, 𝑣, 𝑓) indices for which 𝑥𝑖𝑣𝑓 are set to 1 or 0 in the previous stages using 

look ahead strategy in dynamic programming  

𝐶𝑎𝑝𝑖: Remaining capacity in terms of volume and assignable customer number in stage 

𝑖 

𝐿1
𝛼: Set of 𝑥𝑖𝑣𝑓’s for later customers in dynamic programming that have a value near 

to 1 (greater than 0.9) in the last 𝛼 percent of the iterations of FO executed in the 

dynamic programming. 

𝐶𝑜𝑠𝑡0: Approximate cost of setting  𝑥𝑖𝑣𝑓 = 0 in each stage (approximate value for 

{𝐼(𝐶𝑎𝑝𝑖 , 0) +  𝐾(𝑖 + 1, 𝑓(𝐶𝑎𝑝𝑖 , 0))}) 

𝐶𝑜𝑠𝑡1: Approximate cost setting 𝑥𝑖𝑣𝑓 = 1 in each stage (approximate value for 

{𝐼(𝐶𝑎𝑝𝑖 , 1) +  𝐾(𝑖 + 1, 𝑓(𝐶𝑎𝑝𝑖 , 1))}) 

ADP pseudocode 

Input 𝑃0, 𝑃1, 𝐶𝑎𝑝𝑖 , ∀𝑖 ∈ 𝐶, 𝑣 ∈ 𝑉, 𝑓 ∈ 𝐹 

1. for each 𝑖 = 1. . |𝐶| 

2.    if  ∉ 𝑃 and 𝐶𝑎𝑝𝑖 = 𝑡𝑟𝑢𝑒 do 

 

  

   

 

 

 

 

 

3.     Determine 𝐶𝑜𝑠𝑡0 by calling FO (𝑖, 𝑣, 𝑓, 0, 𝑃0, 𝑃1, 𝑃1
′, 𝐶𝑎𝑝𝑖)  

 
4.     Determine 𝐶𝑜𝑠𝑡1 by calling FO (𝑖, 𝑣, 𝑓, 1, 𝑃0, 𝑃1, 𝑃1

′ , 𝐶𝑎𝑝𝑖) 

5.        if 𝐶𝑜𝑠𝑡0 ≤ 𝐶𝑜𝑠𝑡1 then 

  
6.          𝑃0 = 𝑃0 ∪ (𝑖, 𝑣, 𝑓)  

7.       else  

 

 

 

 

8         if (𝑖, 𝑣, 𝑓) ∈ 𝐿1
𝛼   

 9           𝑃1
′ = 𝑃1

′ ∪ (𝑖, 𝑣, 𝑓)  

Else 
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10         Else 

11.          𝑃1 = 𝑃1 ∪ (𝑖, 𝑣, 𝑓)  

12.          𝑃0 = 𝑃0 ∪ {(𝑖, 𝑣′, 𝑓′)| 𝑣′ ∈ 𝑉\{𝑣}, 𝑓′ ∈ 𝐹\{𝑓}}  

13        end if 

14.      end if 

15.    end if 

16.   end for 

17.  end for 

18. return Cost (null, null, null, 𝑃0, 𝑃1, 𝑃1
′, 𝐿1

𝛼) 

 

Steps of the improvement phase and the notations are defined below: 

Notations: 

𝑁: Set of neighborhoods generated in the first phase, {𝑛1, 𝑛2, 𝑛3, 𝑛4}. 

𝑁′: Set of neighborhoods generated in the second phase, {𝑛′1, 𝑛′2}. 

𝑁𝑣: Set of bounds generated by applying moves in 𝑁 to 𝑉. 

𝑁𝑣
′: Set of bounds generated by applying moves in 𝑁′ to 𝑉. 

𝐶: Set of customers 

𝑉: Set of vehicles  

𝐹: Set of frequencies 

𝐽: Neighbors 

𝑃1: Set of the (𝑖, 𝑣, 𝑓) triples that are fixed to 1 

𝐶𝑜𝑠𝑡: Value of objective function from ADP 

𝐶𝑜𝑠𝑡𝑛𝑣
′ : Value of objective function for the first phase 

𝐶𝑜𝑠𝑡𝑛′𝑣
′ : Value of objective function for the second phase 

𝑛1: Increasing large vehicles number by 1 

𝑛2: Decreasing large vehicles number by 1 

𝑛3: Increasing small vehicles number by 1 

𝑛4: Decreasing small vehicles number by 1 

𝑛′: Addition of one small vehicle and exclusion of one large vehicle 

𝑛′2: Exclusion of two small vehicles and addition of one large vehicle 
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Improvement Stage Pseudocode 

Input 𝑃1, 𝐶𝑜𝑠𝑡, 𝑁𝑣 , 𝑁𝑣
′ , ∀𝑖 ∈ 𝐶, 𝑣 ∈ 𝑉, 𝑓 ∈ 𝐹, 𝑗 ∈ 𝐽 

1. initialize 𝑗 = 0 and 𝑣 ∈ 𝑃1 do 

2.  Calculate 𝐶𝑜𝑠𝑡𝑛𝑣
′  by calling 𝐹&𝑂 (𝑖, 𝑣, 𝑓, 𝑁𝑣)  

3.   if 𝐶𝑜𝑠𝑡𝑛𝑣
′  ≤ 𝐶𝑜𝑠𝑡 then 

4.       𝐶𝑜𝑠𝑡 ← 𝐶𝑜𝑠𝑡𝑛𝑣
′  , 𝑉 ←  𝑁𝑣 do 

5.       Go to step 1  

6.   else if  

7.       𝑗 ≠ |𝑗| 𝑠𝑒𝑡 𝑗 ← 𝑗 + 1 and go to step 2 

8.   else  

9.     Set 𝑘 = 0 do 

10.     Calculate 𝐶𝑜𝑠𝑡𝑛′
′ by calling 𝐹&𝑂 (𝑖, 𝑣, 𝑓, 𝑁𝑣

′
)  

11.   if 𝐶𝑜𝑠𝑡𝑛′𝑣
′ ≤ 𝐶𝑜𝑠𝑡 then 

12.      𝑘 ≠ |𝑘| 𝑠𝑒𝑡 𝑘 ← 𝑘 + 1 and go to step 10 

13.   else if 

 14.       𝑘 = |𝑘| 𝑎𝑛𝑑 𝐶𝑜𝑠𝑡𝑛′𝑣
′

≤ 𝐶𝑜𝑠𝑡 then 

15.      Go to step 1. 

 16.   Else 

17.    end if 

18.   end if 

19 return 𝐶𝑜𝑠𝑡 (𝑖, 𝑣, 𝑓) 

2.5 Problem Space Search Metaheuristics 

In this section, we will provide a brief explanation of the proposed metaheuristic and 

then outline the algorithm steps. The Problem Space Search (PSS) was first introduced 

by Storer et al. (1992) [50] as a novel metaheuristic algorithm. According to Naphade 

et al. (1997) [35], PSS is a solution technique that uses another heuristic to perform a 

local search. The heuristic employed in PSS must be fast and capable of producing 

acceptable solutions. The PSS metaheuristic requires an initial feasible solution, a 

problem-specific fast heuristic, and a method for generating neighborhoods. Unlike 

traditional search methods, PSS generates neighborhoods by perturbing the problem 

data or adjusting heuristic parameters. The perturbed data is then used as input for the 
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problem-based heuristic, while the original data is used to evaluate the quality of 

solutions within each neighborhood. A pair (ℎ, 𝑝) represents a neighborhood in which 

the search is conducted. Here, h represents the heuristic method, and p represents the 

problem data. Applying the heuristic to the problem yields the solution, which can be 

represented as 𝑠 =  ℎ(𝑝). The essence of PSS lies in the repeated application of the 

heuristic with altered data, leading to changes in decision sequences within the 

heuristic. The quality of solutions produced by PSS depends on factors such as the 

suitability and efficiency of the base heuristic. It is crucial to choose a problem-specific 

heuristic that can produce quality solutions within reasonable time frames. 

Additionally, the magnitude of perturbations must be appropriate—not too large or too 

small—to ensure variation in instances without compromising solution quality. 

Here, we introduce two variations of the PSS metaheuristic, both of which incorporate 

the Fix and Optimize (FO) technique proposed in our previous paper, Dastjerd & 

Ertogral (2019) [14]. First, we present PSSI, which slightly modifies the cost data of 

the problem. Second, we introduce PSSII, which involves changes in heuristic 

parameters for neighborhood generation. The steps for PSS are described in following 

sections. 

2.5.1 PSSI description and steps 

The problem involves various cost parameters, including holding and replenishment 

costs, deadheading and per kilometer costs, and vehicle ownership costs. To create 

different instances for the problem, we use a perturbation parameter, β, which helps 

generate upper and lower limits for each cost component, C. The cost ranges are then 

utilized to generate new random values for each cost parameter, ensuring they fall 

within the high and low levels specified by the cost range. Each newly generated 

random instance is then fed into the fix and optimize algorithm. 

During the process, the objective function value for each unique random instance is 

calculated using the original cost data. After each call to the heuristic, the best current 

solution value is updated, and the values of the variables corresponding to the best 

solution are saved. The solution obtained in the initial phase is then used in the second 

phase for further improvement. To guide through the PSSI application, we first provide 
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a list of the notations used to define the steps, followed by instructions on applying the 

PSSI method. 

 

Notations: 

𝑚: The number of data instances generated randomly. 

𝐷𝑖:  𝑖
𝑡ℎ random instance. 

𝑅𝑐: Range vector for cost component 𝐶. 

𝐶: Vector of original cost component. 

𝐶𝑖
𝑟: Vector of random cost component for instance 𝑖. 

𝑆𝑖
𝐹𝑂: Solution from FO for instance 𝑖. 

𝑆𝑐
∗: Latest best solution 

𝑂𝑏𝑗𝑐
∗: Latest best objective value. 

𝑂𝑏𝑗𝑖: Objective function value for  𝑖𝑡ℎ random instance. 

𝛽: Perturbation parameter 

 

Steps for PSSI algorithm: 

Step 1. Equate the instance counter 𝑖 to 1, and the 𝑂𝑏𝑗𝑐
∗ to infinity. 

Step 2. Calculate the range vector R for 𝐶 using the equations (4.1) and (4.2). 

Step 3. Generate 𝐷𝑖 of instance I using the randomly generated 𝐶𝑖
𝑟 values. 

Step 4. Call the first phase of FO and solve the problem for 𝐷𝑖 values. 

Step 5. Find the value of 𝑂𝑏𝑗𝑖 by incorporating 𝑆𝑖
𝐹𝑂 and 𝐶 to the objective function 

formula. 

Step 6. Compare the new objective value with current objective value: 

        6.1. If 𝑂𝑏𝑗𝑖 < 𝑂𝑏𝑗𝑐
∗, 𝑂𝑏𝑗𝑐

∗ ←  𝑂𝑏𝑗𝑖 and 𝑆𝑐
∗ ←  𝑆𝑖

𝐹𝑂 . 

        6.2. If 𝑂𝑏𝑗𝑖 ≥ 𝑂𝑏𝑗𝑐
∗, go to Step 3. 

Step 7. Increase instance counter by 1 and go through steps 3 to 6 until 𝑖 >  𝑚. 

Step 8. Select the smallest value of objective function among all the 𝑚 instances. 

Step 9. Feed the best current solution 𝑆𝑐
∗ to the second phase of FO, improve and report 

the solution value.  
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For better clarity, we provide the flowchart in Figure 2.3 to illustrate the PSSI steps. 
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Figure 2.3: Flowchart for PSSI. 

2.5.2 PSSII description and steps 

The quality and duration of the solution can be influenced by the order in which the 

subproblems are solved in FO. Thus, the subproblem solving order becomes crucial. 

In this study, we leverage this characteristic to generate random yet acceptable 

solutions. In PSSII, we introduce randomization in generating the subproblem orders. 

Specifically, for each FO run, the customer index set is randomly regenerated. As a 

result, in this version of PSS, the perturbation for neighborhood generation involves 

changing the parameters of the heuristic rather than the dataset. The only notation that 

differs from PSSI is denoted as 𝐼𝑖
′, which represents the new customer index set for 

dataset i. The algorithm steps are outlined below: 

Steps for PSSII algorithm: 

Step 1. Equate the instance counter 𝑖 to 1, and the 𝑂𝑏𝑗𝑐
∗ to infinity. 

Step 2. Produce a random consumer index set 𝐼𝑖
′. 

Step 3. Generate the dataset 𝑖 using the 𝐼𝑖
′ to build customer subgroups. 

Step 4. Feed the new dataset 𝐷𝑖 to first phase of FO algorithm and solve the problem. 

Step 5. Compare the objective function value: 
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   5.1. If 𝑂𝑏𝑗𝑖 < 𝑂𝑏𝑗𝑐
∗, 𝑂𝑏𝑗𝑐

∗ ←  𝑂𝑏𝑗𝑖 and 𝑆𝑐
∗ ←  𝑆𝑖

𝐹𝑂 . 

  5.2. If 𝑂𝑏𝑗𝑖 ≥ 𝑂𝑏𝑗𝑐
∗, go to Step 2. 

Step 6. Increase 𝑖 by 1 and go through steps 2 to 5 until 𝑖 >  𝑚. 

Step 7. Select the smallest value of objective function among all the 𝑚 instances. 

Step 8. Feed the best current solution 𝑆𝑐
∗ to the second phase of FO, improve and report 

the solution value. 

To enhance clarity, we provide a flowchart in Figure 2.4 which illustrates the steps of 

PSSII:
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currentObj=infinity

         

' (1, )i Rand nI =

'
( )

( , )

i

ii

iFOS FOI I

obj obj FOS C

=

=

iobj CurrentObj Yes i

i

Currentobj obj

S FOS





No

i>n

No

Yes ( , )FinalSolution FOII Currentobj S= Stop

 

Figure 2.4:  Flowchart for PSSII. 

2.6 Computational Results 

We conducted a numerical analysis of the proposed solution approach using the dataset 

generated as described in 2.4.12.6.1. The details of the analysis setup and the obtained 

results are presented in the following subsections. 

2.6.1 Dataset  

The proposed heuristic is assessed through four distinct scenarios, each characterized 

by varying demand levels and customer clusters. These scenarios correspond to the 

ones used in Dastjerd & Ertogral (2019) [14]. Scenario 1 and 2 represent cases with 

normal demand, with scenario 2 further grouping customers based on their 

geographical location. Scenarios 3 and 4 present high demand versions, with the 

demand increased by 50%, of scenario 1 and 2, respectively. 
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Regarding problem variations, we defined 24 different settings, taking into account 

vehicle capacities (cap), costs per kilometer for vehicles (R), vehicle ownership costs 

(A), inventory holding costs (h), and fixed setup cost (K). In Table 2.2, 1.2A denotes 

cases with a 20% increase in ownership costs, while 1.4A indicates settings with a 

40% increase in ownership costs for larger vehicles. Similar patterns apply to 1.2R and 

1.4R in terms of cost per kilometer for vehicles. Across all parameter settings, 40 

customers are served with 8 owned vehicles, and their yearly demand is generated 

based on a uniform distribution ranging from 80 to 120 units. The parameter settings 

are presented in Table 2.2. 

Table 2.2: Problem characteristics. 

Setup cost Holding 

cost 

Ownership 

cost 

Routing 

cost 

Capacity Problem 

No. 

k=50 

h=300 

1.2A 

1.2R 
7,10 1 

14,20 2 

21,27 3 

1.4R 

7,10 4 

14,20 5 

21,27 6 

1.4A 

1.2R 
7,10 7 

14,20 8 

21,27 9 

1.4R 

7,10 10 

14,20 11 

21,27 12 

h=600 

1.2A 

 1.2R 
7,10 13 

14,20 14 

21,27 15 

1.4R 

7,10 16 

14,20 17 

21,27 18 

1.4A 
1.2R 

7,10 19 

14,20 20 

21,27 21 

1.4R 

7,10 22 

14,20 23 

21,27 24 
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2.6.2 ADP results with improvement step 

The proposed heuristic was implemented to evaluate its performance on the generated 

instances. The results obtained from the heuristic were then compared to those 

obtained from CPLEX. All of the problems were solved within the 3-hour time limit 

in CPLEX, and for some instances, the results are reported as best lower bounds. The 

gaps from the lower bounds are denoted with an asterisk (*). We conducted an analysis 

of the results, categorizing them based on the gaps from CPLEX results, fleet 

compositions, and solution durations. The tabulated results are presented below. 

From the gaps presented in Table 2.3, we can conclude that the solutions obtained from 

the ADP heuristic demonstrate satisfactory performance. The gaps, ranging from 4.5 

to 9.24 average deviations across the four scenarios, are mostly close to the lower 

bounds obtained from CPLEX within the 3-hour run time. As a result, the deviation 

from the actual optimal solution is expected to be even less than these values. 

Observing the data in Table 2.3 , it becomes evident that clustering has a negative 

impact on the performance of the ADP heuristic when comparing scenario 2 to 

scenario 1 and scenarios 4 to scenario 2. This outcome is expected because clustering 

makes the problem more challenging for the fix and optimize process. Any incorrect 

early assignment of a vehicle-frequency pair to a customer becomes harder to rectify 

through later assignments due to the significantly reduced feasible solution space in 

the clustered cases compared to scenarios with no clusters.  

The challenging nature of the clustered problems is evident from the fact that the 

number of problems solved to optimality within the 3-hour run time is much higher in 

scenarios 1 and 3 when compared to scenarios 2 and 4. 

The performance of ADP is negatively affected by the demand. In high-demand 

scenarios, the solution typically requires a larger number of vehicles, leading to an 

increase in the number of alternatives that need to be considered. As a result, higher 

demand makes the problem more complex, thus slightly reducing the performance of 

the heuristic.  

In Table 2.4, when considering the scenario-based average vehicle utilization, the total 

average number of vehicles assigned for distribution operations increases with the 

addition of clusters and by increasing the demand values by 50%. For instance, moving 
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from scenario 2 to 3, the total average changes from 2.25 to 2.67, and in terms of fleet 

composition, the number of small trucks changes from 1.58 to 2. This increase is 

attributed to the higher demand in scenario 3, while the available truck capacity 

remains unchanged. Similarly, transitioning from scenario 2 to 4 results in changes in 

the average total number of utilized vehicles and fleet composition. The addition of 

clusters in scenarios with higher demands leads to alterations in the total average 

number of vehicles, whereas in scenarios with base demand, it remains the same. 

Table 2.5, tabulates solution times for different scenarios. As it is anticipated, solving 

scenarios with clusters yield longer solution times resulting from the limitation put on 

the route generation. That is, there is a constraint on the customers to be served on the 

same route. Geographically distant ones cannot be visited on the same route in a day. 

This constraint leads to an increase in the number of choices to be assessed for 

assigning customers to vehicles and frequencies.  

Figure 2.5 to Figure 2.8 depict the percentages of cost components relative to the total 

cost in each specific scenario. The considered cost components include setup cost, 

inventory holding cost, vehicle ownership cost, and approximate routing cost. Across 

all scenarios and problem settings, ownership cost consistently emerges as the highest 

cost item, accounting for 30% to 60% of the total cost. Following closely is the setup 

cost, which fluctuates between 20% and 50% of the total annual cost. Inventory 

holding cost constitutes approximately 5% to 30% of the total cost. As mentioned 

earlier, the routing cost has the lowest percentage, making up to 20% of the total cost. 

These cost percentages align with the expected distribution for logistics costs in 

practice, where inventory-related costs constitute about one third of the total logistics 

costs, while the remaining two thirds are attributed to transportation expenses. 

The following set of charts, Figure 2.9 to Figure 2.12, illustrate the frequency 

distribution for each frequency set in each problem scenario. These charts provide 

insights into how frequently each set of frequencies (daily, weekly, bi-weekly, thrice-

weekly, or quarto-weekly) is utilized in each parameter setting within each scenario. 

In scenarios 1 and 2, bi-weekly replenishment plans are predominantly favored, while 

in scenarios 3 and 4, customers are mostly replenished with weekly delivery programs. 

The reason for this disparity between scenarios lies in the demand levels. In the first 
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two scenarios, the demand is relatively low, allowing for a larger consolidation of 

products in a single truck, considering the carrying capacities. On the other hand, in 

scenarios 3 and 4, the demand values are increased by 50%, while the vehicle 

capacities remain the same. Consequently, there is less opportunity for consolidation 

in a single truck, resulting in a greater need for more frequent replenishments to meet 

customer demands. 

Table 2.3: Percentage deviations from best bounds /optimal for improved ADP. 

  Scenario 1 Scenario 2 

 

Scenario 3 

 

Scenario 4 

 
1 1.67%* 3.76%* 13.38% 14.76%* 

2 4.15% 7.46%* 1.61%* 6.94%* 

3 1.23%* 10.26%* 1.23% 12.93%* 

4 9.90% 4.77%* 12.44% 10.95%* 

5 3.54% 2.18%* 1.19% 5.60%* 

6 1.75%* 10.06%* 1.23% 7.67%* 

7 12.49% 14.72%* 13.44% 11.50%* 

8 1.62%* 8.38%* 1.01% 10.04%* 

9 1.67% 10.19%* 1.32%* 6.83%* 

10 12.34% 6.75%* 11.77% 7.52%* 

11 1.32% 7.75%* 1.01% 10.78%* 

12 1.43%* 10.00%* 1.34%* 7.10%* 

13 9.47% 4.16%* 9.99% 11.08%* 

14 1.30% 9.97%* 8.54% 7.11%* 

15 0.00% 0.00% 1.02% 5.70%* 

16 13.01% 5.01%* 16.00% 10.08%* 

17 1.12% 9.62%* 0.60% 7.12%* 

18 0.00% 0.00% 0.77% 21.33%* 

19 12.47% 6.30%* 11.94% 8.08%* 

20 1.30% 7.68%* 8.54% 11.75%* 

21 0.13% 0.00% 0.82% 3.78%* 

22 12.20% 7.41%* 11.28% 7.21%* 

23 1.02% 7.29%* 8.54% 12.59%* 

24 0.13% 0.00% 0.85% 3.20%* 

Ave 4.50% 6.41% 5.75% 9.24% 
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Table 2.4: Scenario based Fleet utilization average for improved ADP. 

  Scenario 1 Scenario 2 Scenario 3 Scenario 4 

L S L S L S L S 

Ave 0.67 1.58 0.54 1.71 0.67 2.00 0.92 2.13 

Table 2.5: CPU times (in seconds) for improved ADP. 

  Scenario 1 Scenario 2 

 

Scenario 3 

 

Scenario 4 

 

1 233.22 2686.43 2626.93 4567.63 

2 384.86 2244.66 241.18 1947.72 

3 409.29 4399.31 361.70 4685.58 

4 425.80 3627.30 978.29 5127.14 

5 320.33 2052.15 399.65 2710.26 

6 579.04 3816.51 266.09 4487.38 

7 684.45 2343.58 949.97 1886.79 

8 655.26 5996.36 658.90 5802.12 

9 267.41 4328.48 235.93 5010.19 

10 431.78 3660.73 1230.30 3939.08 

11 496.26 5868.22 727.76 6409.28 

12 274.68 4751.66 502.45 4810.56 

13 953.07 2006.66 1086.33 2775.83 

14 245.61 2937.31 429.50 3433.01 

15 208.42 1758.74 259.50 2512.47 

16 437.50 1750.55 1100.78 3065.19 

17 253.07 2959.58 437.88 4230.39 

18 208.27 1613.82 345.55 2728.12 

19 721.72 2138.13 873.62 3701.81 

20 303.34 3813.74 449.71 3653.63 

21 248.30 1335.90 312.33 2823.36 

22 497.28 1619.63 1142.93 2809.44 

23 548.66 3410.48 494.57 3602.08 

24 192.53 1600.90 232.82 2804.65 

Ave 415.84 3030.03 681.03 3730.15 
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Figure 2.5: Cost element percentages for scenario 1. 

 

Figure 2.6: Cost element percentages for scenario 2. 
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Figure 2.7: Cost element percentages for scenario 3. 

 

 

Figure 2.8: Cost element percentages for scenario 4. 
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Figure 2.9: Frequency repetition for scenario 1. 

 

Figure 2.10: Frequency repetition for scenario 2. 
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Figure 2.11: Frequency repetition for scenario 3. 

 

Figure 2.12: Frequency repetition for scenario 4. 
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In this section, we analyze and discuss the results obtained from PSSI, PSSII, and the 

basic FO approach. We aim to observe the improvements brought by PSSI and PSSII 

compared to the simple FO method. The results for the two versions of PSS and FO 

are presented in several tables, labeled from Table 2.6 to Table 2.13, covering the gaps 

from the optimal or best bounds obtained from CPLEX, fleet composition details, and 

average solution durations. In these tables, L-S stands for large and small vehicles. 

For the first set of tables that show the gaps, the values for the optimal solutions or 

best bounds are obtained using the MIP solver CPLEX. Since there is a time limit on 

the solutions from CPLEX, all results are obtained within three hours. The values 

marked with a star (*) indicate the divergence from the best lower bounds. 

This section provides a comparison of the results from the PSS heuristics and FO, and 

the comments are categorized into three subsections based on the data presented in the 

tables, as described above. 

2.6.3.1  Percentage gaps from optimal/best bounds  

As explained in previous section, we developed two versions of PSS metaheuristic for 

the integrated fleet sizing and replenishment planning problem. The first version, PSSI 

uses cost data perturbation for generating neighborhoods. Results from PSSI with 

perturbation factors of 𝛽1 =10% and 𝛽2 = 20% are presented in Table 2.6 and Table 

2.9. Comparing the gaps from PSS versions to FO, a significant decrease is observable. 

In general, addition of clusters leads to higher annual costs. The fact behind this 

objective function value growth is that, geographical clustering brings limitations to 

the transportation operations in terms of vehicle-customer assignment. Fixed vehicle 

capacities and the customers which cannot be served on the same routes, necessitate a 

higher number of vehicles for satisfying the same demand amount comparing to the 

case in which there is no rule for route generation. In our setting the highest cost is the 

ownership cost which is in accordance with the number of assigned vehicles. Hence, 

only one extra vehicle added to the fleet can cause a noticeable increase in total cost. 

In scenario 2 and scenario 4 we cluster customers into groups, and hence the highest 

gaps belong to these two scenarios. Highest gap for FO in Scenario2 is for problem 

number 16 with value of 16.07% from the best bound. As it is seen in Table 2.6 PSS 

reduced the gap value to 5.01%. The same pattern is tracible in Scenario4 with the 
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highest FO gap belonging to 17. problem with value of 31.70% which is reduced to 

7.12% by applying PSS. According to Table 2.9, PSS variations enhance the solution 

by generating a variety of neighborhoods through cost data perturbation and sub 

problem order randomization. Table 2.9 illustrates that the highest gaps in three of the 

four scenarios belong to FO which proves the effectiveness of PSS metaheuristic. 

Considering PSS variations, it seems that PSSI with perturbation factor of 20% 

outperforms the other two versions. According to Table 2.9, minimum gaps three of 

four scenarios belong to PSS (β2). 

Table 2.6: Deviations from objective function value for FO and PSSI (β1) 

Problem 

No  

Scenario1 Scenario2 Scenario3 Scenario4 

FO PSSI 

(β1) 

FO PSSI 

(β1) 

FO PSSI 

(β1) 

FO PSSI 

(β1) 
1 14.70%* 9.95%* 3.76%* 3.76%* 17.61% 10.93% 15.62%* 15.62%* 

2 4.57% 3.53% 7.46%* 7.46%* 1.34%* 1.64%* 21.17%* 6.94%* 

3 1.65%* 1.41%* 10.29%* 10.26%* 2.06% 1.44% 12.93%* 12.28%* 

4 9.90% 1.55% 16.58%* 4.77%* 17.05% 11.55% 12.00%* 12.00%* 

5 4.15% 3.07% 2.18%* 2.18%* 1.43% 1.29% 5.60%* 5.60%* 

6 1.90%* 1.30%* 10.06%* 10.04%* 1.47% 0.87% 7.67%* 7.66%* 

7 13.66% 4.00% 14.72%* 6.56%* 13.91% 13.96% 11.50%* 11.50%* 

8 2.47%* 1.62%* 8.38%* 6.27%* 11.71% 1.01% 20.78%* 10.04%* 

9 0.98% 0.98% 10.19%* 10.17%* 2.20%* 2.04%* 6.83%* 6.83%* 

10 12.98% 13.15% 14.49% 14.49%* 13.51% 7.26% 11.19%* 11.19%* 

11 2.34% 1.60% 7.75%* 6.17%* 9.88% 1.01% 27.42%* 10.78%* 

12 1.35%* 1.28%* 10.00%* 9.97%* 1.98%* 1.32%* 7.10%* 7.10%* 

13 12.93% 9.46% 15.70%* 4.16%* 15.69% 9.99% 12.67%* 12.63%* 

14 1.18% 0.22% 10.31%* 6.62%* 13.82% 0.31% 20.35%* 7.11%* 

15 0.06% 0.23% 0.00% 0.00% 0.94% 0.76% 5.70%* 5.69%* 

16 13.88% 9.94% 16.07%* 5.01%* 15.79% 11.96% 12.25%* 12.25%* 

17 1.79% 1.02% 9.96%* 6.76%* 0.60% 0.60% 31.70%* 7.12%* 

18 0.06% 0.46% 0.00% 0.46% 1.25% 0.76% 21.33%* 21.32%* 

19 12.60% 13.05% 14.01%* 15.10%* 13.48% 7.66% 12.15%* 12.11%* 
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20 1.46% 0.81% 7.68%* 7.68%* 0.31% 0.60% 29.99%* 21.24%* 

21 0.29% 0.23% 0.00% 0.46% 1.76% 0.76% 3.78%** 3.77%* 

22 11.95% 12.24% 14.68%* 15.87%* 7.29% 7.29% 11.80%* 11.80%* 

23 1.50% 0.81% 7.29%* 7.29%* 13.33% 0.32% 21.74%* 21.74%* 

24 0.29% 0.23% 0.00% 0.46% 1.41% 0.76% 3.20%* 3.20%* 

Ave 5.36% 3.84% 8.82% 6.75% 7.49% 4.00% 14.44% 10.73% 

 

Table 2.7: Deviations from objective function value for FO and PSSI (β2). 

Proble

m No 

Scenario1 Scenario2 Scenario3 Scenario4 

FO  PSSI 

(β2) 

FO  PSSI 

(β2) 

FO  PSSI 

(β2)  

FO  PSSI 

(β2)  1 14.70%* 9.95%

* 

3.76%* 3.76%* 17.61

% 

11.22

% 

15.62%

* 

15.62%

* 2 4.57% 0.51% 7.46%* 7.46%* 1.34%

* 

1.64%

* 

21.17%

* 

6.94%* 

3 1.65%* 1.22%

* 

10.29%

* 

10.26%

* 

2.06% 1.36% 12.93%

* 

12.28%

* 4 9.90% 9.90% 16.58%

* 

4.77%* 17.05

% 

11.64

% 

12.00%

* 

12.00%

* 5 4.15% 1.35% 2.18%* 2.18%* 1.43% 1.12% 5.60%* 5.60%* 

6 1.90%* 1.40%

* 

10.06%

* 

10.04%

* 

1.47% 1.18% 7.67%* 7.66%* 

7 13.66% 12.49

% 

14.72%

* 

6.56%* 13.91

% 

7.53% 11.50%

* 

11.50%

* 8 2.47%* 1.24%

* 

8.38%* 6.27%* 11.71

% 

1.01% 20.78%

* 

10.04%

* 9 0.98% 1.02% 10.19%

* 

10.17%

* 

2.20%

* 

1.90%

* 

6.83%* 6.83%* 

10 12.98% 4.13% 14.49%

* 

14.49%

* 

13.51

% 

7.26% 11.19%

* 

11.19%

* 11 2.34% 1.32% 7.75%* 6.17%* 9.88% 1.01% 27.42%

* 

10.78%

* 12 1.35%* 1.11%

* 

10.00%

* 

9.97%* 1.98%

* 

1.28%

* 

7.10%* 7.10%* 

13 12.93% 9.46% 15.70%

* 

4.16%* 15.69

% 

9.99% 12.67%

* 

12.63%

* 14 1.18% 0.26% 10.31%

* 

6.62%* 13.82

% 

0.60% 20.35%

* 

7.11%* 

15 0.06% 0.46% 0.00% 0.00% 0.94% 0.76% 5.70%* 5.69%* 

16 13.88% 9.94% 16.07%

* 

5.01%* 15.79

% 

11.33

% 

12.25%

* 

12.25%

* 17 1.79% 1.07% 9.96%* 6.76%* 0.60% 0.60% 31.70%

* 

7.12%* 

18 0.06% 0.46% 0.00% 0.46% 1.25% 0.70% 21.33%

* 

21.09%

* 19 12.60% 4.54% 14.01%

* 

15.10%

* 

13.48

% 

7.66% 12.15%

* 

12.11%

* 20 1.46% 1.02% 7.68%* 7.68%* 0.31% 0.29% 29.99%

* 

11.75%

* 21 0.29% 0.46% 0.00% 0.00% 1.76% 0.76% 3.78%* 3.77%* 
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22 11.95% 12.46

% 

14.68%

* 

15.87%

* 

7.29% 7.29% 11.80%

* 

7.60%* 

23 1.50% 0.87% 7.29%* 7.29%* 13.33

% 

0.60% 21.74%

* 

12.59%

* 24 0.29% 0.23% 0.00% 0.46% 1.41% 0.76% 3.20%* 2.99%* 

Ave 5.36% 3.62% 8.82% 6.73% 7.49% 3.73% 14.44% 9.76% 

 

Table 2.8: Deviations from objective function value for FO and PSSII. 

 Problem 

No 

Scenario1 Scenario2 Scenario3 Scenario4 

FO  PSSII FO  PSSII FO  PSSII FO  PSSII 

1 14.70%* 1.69%* 3.76%* 2.55%* 17.61% 13.38% 15.62%* 14.23%* 

2 4.57% 4.15% 7.46%* 7.39%* 1.34%* 1.61%* 21.17%* 6.09%* 

3 1.65%* 1.34%* 10.29%* 10.26%* 2.06% 0.87% 12.93%* 7.77%* 

4 9.90% 0.97% 16.58%* 4.04%* 17.05% 12.44% 12.00%* 10.15%* 

5 4.15% 3.54% 2.18%* 1.57%* 1.43% 1.19% 5.60%* 3.91%* 

6 1.90%* 1.75%* 10.06%* 32.71%* 1.47% 0.95% 7.67%* 2.75%* 

7 13.66% 13.71% 14.72%* 10.90%* 13.91% 13.44% 11.50%* 7.52%* 

8 2.47%* 1.62%* 8.38%* 7.00%* 11.71% 1.01% 20.78%* 4.86%* 

9 0.98% 1.67% 10.19%* 32.74%* 2.20%* 1.39%* 6.83%* 1.58%* 

10 12.98% 13.90% 14.49% 11.04%* 13.51% 11.77% 11.19%* 7.05%* 

11 2.34% 1.32% 7.75%* 6.46%* 9.88% 1.01% 27.42%* 5.32%* 

12 1.35%* 1.43%* 10.00%* 32.55%* 1.98%* 1.53%* 7.10%* 2.20%* 

13 12.93% 13.86% 15.70%* 14.73%* 15.69% 9.99% 12.67%* 10.84%* 

14 1.18% 1.30% 10.31%* 9.40%* 13.82% 8.54% 20.35%* 4.78%* 

15 0.06% 0.00% 0.00% 19.20% 0.94% 0.78% 5.70%* 3.37%* 

16 13.88% 13.67% 16.07%* 13.48%* 15.79% 16.00% 12.25%* 9.86%* 

17 1.79% 1.12% 9.96%* 8.66%* 0.60% 0.60% 31.70%* 4.83%* 

18 0.06% 0.00% 0.00% 19.01% 1.25% 0.74% 21.33%* 18.37%* 

19 12.60% 12.65% 14.01%* 12.31%* 13.48% 11.94% 12.15%* 11.16%* 

20 1.46% 1.30% 7.68%* 6.87%* 0.31% 8.54% 29.99%* 6.34%* 

21 0.29% 0.13% 0.00% 19.11% 1.76% 0.76% 3.78%* 1.28%* 

22 11.95% 12.07% 14.68%* 12.73%* 7.29% 11.28% 11.80%* 11.00%* 

23 1.50% 1.02% 7.29%* 6.57%* 13.33% 8.54% 21.74%* 6.79%* 
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24 0.29% 0.13% 0.00% 18.78% 1.41% 0.76% 3.20%* 0.76%* 

Ave 5.36% 4.35% 8.82% 13.34% 7.49% 5.79% 14.44% 6.78% 

 

Table 2.9: Average, Min and Max gaps from optimal/best bound for FO, PSSI and 

PSSII. 
 

Average Gap 
 

Scenario1 Scenario2 Scenario3 Scenario4 

Methods 

FO 5.36% 8.82% 7.49% 14.44% 

PSSI (β1) 3.84% 6.75% 4.00% 10.73% 

PSSI (β2) 3.62% 6.73% 3.73% 9.76% 

PSSII 4.35% 13.34% 5.79% 6.78% 

Min 3.62% 6.73% 3.73% 6.78% 

Max  5.36% 13.34% 7.49% 14.44% 

 

2.6.3.2 Fleet composition  

Table 2.10 and Table 2.11 present the fleet composition and average number of 

assigned vehicles for FO, PSSI, and PSSII, respectively. Table 2.12 shows the total 

average vehicle usage for all four solution techniques. In these tables, the columns "L" 

and "S" represent large and small vehicle types, respectively. 

When analyzing the average vehicle numbers across different scenarios, it is evident 

that the addition of clusters leads to a similar pattern as observed in the objective 

function values. In Scenario 3, where routes can be generated freely without any 

limitations on customer addition except for 𝑠𝑚𝑎𝑥, the average number of large and 

small vehicles is significantly lower compared to Scenario 4, where not all customers 

can be served on the same route. For example, when applying PSSI with a perturbation 

factor of 10%, the average number of used vehicles in Scenario 3 is approximately 

2.67, while in Scenario 4, it is around 2.75. 

Demand increase is another crucial factor influencing fleet size and vehicle 

combinations. In Scenarios 3 and 4, where demand is 50% higher than in Scenarios 1 
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and 2, the average number of vehicles also increases accordingly. For instance, in 

Scenario 1, when applying PSSI (β₁), the average number of vehicles is 2.29, whereas 

in Scenario 3, it rises to an average of 2.79. 

Comparing the solution methods and the results summarized in Table 2.12, it becomes 

evident that the highest number of vehicles is used when employing the FO approach. 

Implementing the PSS metaheuristic brings improvements in terms of vehicle usage 

and cost savings. However, there is no significant difference between the results 

obtained from the two PSS variations. 

Table 2.10: Average vehicle numbers from FO and PSSI variations. 

  

Scenario1 Scenario2 Scenario3 Scenario4 

FO 
PSSI 

(𝛽1) 

PSSI 

(𝛽2) 
FO 

PSSI 

(𝛽1) 

PSSI  

(𝛽2) 
FO 

PSSI  

(𝛽1) 

PSSI 

(𝛽2) 
FO 

PSSI  

(𝛽1) 

PSSI 

(𝛽2) 

L S L S L S L S L S L S L S L S L S L S L S L S 
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e 

0

.

5

0 

1

.

7

9 

0

.

5

4 

1

.

5

8 

0

.

7

5 

1

.

3

3 

0

.

4

6 

1

.

8

3 

0

.

7

9 

1
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9 
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.
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9 

1

.

3

3 

0.46 2

.

3

3 

0.54 2

.

1

3 

0.67 2 0.92 2

.

1

7 

1.21 1

.

5

4 

1.38 1

.

3

8 
 

Table 2.11: Average vehicle numbers from FO and PSSII. 

  Scenario1 Scenario2 Scenario3 Scenario4 

FO PSSII FO PSSII FO PSSII FO PSSII 

L S L S L S L S L S L S L S L S 

Ave 0.50 1.79 0.50 1.75 0.46 1.83 0.5 1.8 0.46 2.33 0.67 1.92 0.92 2.17 0.8 1.92 

 

Table 2.12: Average total vehicle usage for FO, PSSI and PSSII. 
 

Average Vehicle Usage  

Scenario1 Scenario2 Scenario3 Scenario4 

Method 

FO 2.29 2.29 2.79 3.08 

PSSI (β1) 2.13 2.08 2.67 2.75 

PSSI (β2) 2.08 2.13 2.67 2.75 

PSSII 2.25 2.25 2.58 2.67 

Min 2.08 2.08 2.58 2.67 

Max 2.29 2.29 2.79 3.08 
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2.6.3.3 Computational time.  

 Regarding computational time, as shown in Table 2.13, the longest solution times are 

observed in Sc2 and Sc4. These scenarios involve grouping customers into specific 

clusters, where not all customers are allowed to be included. Consequently, serving all 

customers requires a higher number of vehicles, leading to an increase in potential 

solution choices. More choices for vehicle assignment result in longer solution 

durations. Among the different variations of the PSS metaheuristic, PSSII, which 

randomizes the subproblem order, achieves the shortest solution duration. This is 

because in FO, where the main problem is divided into integer and non-integer blocks 

of subproblems, the order of solving these subproblems significantly impacts the 

computation. Randomizing the solution order of subproblems leads to a decrease in 

CPU time. 

Comparing the solution times for FO and the PSS versions while considering the 

number of solved instances, it is evident that the CPU times for the PSS variations are 

reasonable, given the improvements they bring in terms of solution quality. 

Table 2.13: Average solution durations in seconds for FO, PSSI and PSSII. 
 

Average Solution Time 

Method Scenario1 Scenario2 Scenario3 Scenario4 

FO 746.28 135.12 38.76 231.72 

PSSI (β1) 991.94 5818.16 1056.24 9152.84 

PSSI (β2) 991.36 5758.25 1029.40 9043.18 

PSSII 820.11 5947.11 813.44 7908.26 

Min 746.28 135.12 38.76 231.72 

Max 991.94 5947.11 1056.24 9152.84 

 

2.7 CONCLUSION 

The initial part of this thesis explores two new approaches to address the previously 

proposed problem of integrated fleet sizing and delivery planning, where candidate 

replenishment frequencies are pre-determined. Our objective is to determine 
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replenishment plans for clients based on defined delivery frequencies, which are 

determined by the number of weeks between deliveries, including a daily 

replenishment option. The demands are transported to their respective destinations 

using a diverse fleet of trucks. Since this problem involves strategic decision-making, 

we need to use approximations for routing costs rather than precise details. Our main 

goal is to find the optimal customer-vehicle-frequency assignment at the lowest cost. 

However, due to the NP-hard nature of the problem, conventional tools like CPLEX 

may not provide the best solutions within a reasonable timeframe, particularly for 

larger instances. 

In this study, we improved the ADP algorithm and showcased its efficacy by applying 

it to a range of randomly generated instances with diverse characteristics. 

The second solution method implemented, the Problem Space Search (PSS) is a 

straightforward metaheuristic method that utilizes a heuristic to create a new search 

space within the original problem space by temporarily modifying the data or 

parameters of the problem-specific heuristic. We consider two versions of PSS in this 

research. In PSSI, cost data is perturbed and fed to the fix and optimize, while in PSSII, 

the order in which the fix and optimize subproblems are handled is randomized. 

The results showed that the inclusion of clusters in the fleet sizing and replenishment 

planning problem led to more challenging problems with higher annual costs. This 

increase was attributed to the limitations imposed by geographical clustering on 

transportation operations and vehicle-customer assignment. 

Applying PSS-based metaheuristics significantly reduced the gaps in comparison to 

the Fix-and-Optimize (FO) approach. The PSS variations demonstrated their 

effectiveness in enhancing the solution quality by generating diverse neighborhoods 

through cost data perturbation and subproblem order randomization. Among the PSS 

variations, PSS-I with a perturbation factor of 20% outperformed the other versions, 

exhibiting the minimum gaps in three out of the four scenarios. 

Regarding fleet composition, the average number of assigned vehicles aligned with the 

patterns observed in objective function values. The addition of clusters led to increased 

average numbers of large and small vehicles. Demand increases also influenced fleet 

size and composition. 
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In terms of computational time, scenarios involving customer clustering and 

limitations on customer insertion exhibited higher solution times. PSSII demonstrated 

the lowest solution duration among the PSS variations. Comparing solution methods, 

it was evident that the PSS variations offered substantial improvements in both 

solution quality and computational efficiency, making them viable alternatives to the 

FO approach.
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3 EXTENDED PROBLEM WITH GENERALISED DELIVERY PATTERNS  

3.1 Introduction  

Retailers are under pressure due to narrow profit margins, compelling them to 

consistently pursue operational excellence in logistics. Enhancing the effectiveness of 

product delivery from distribution centers to stores remains a continuous endeavor 

within the retail industry. As stated in Agrawal & Smith (2015) [1], retail 

establishments must ascertain the most advantageous delivery strategies and 

streamline the routes taken by vehicles to restock store inventory from warehouses. In 

the realm of grocery retail, stores often adhere to recurrent weekly demand trends. As 

a result, these retailers address both customer and store requirements by periodically 

restocking their stores through specific delivery schedules. These delivery patterns 

encompass a particular selection of weekdays when deliveries from the distribution 

center consistently reach a specific store within standard weeks – those that lack public 

holidays – over a designated planning period. Research evidence confirms that most 

grocery businesses adopt such delivery patterns, typically tailored based on sales 

volume and store dimensions (Kuhn & Sternbeck (2013) [32]). 

Implementing repetitive and store-specific delivery patterns brings forth several 

advantages: 

(1) Organizing the workforce for the task of replenishing shelves becomes notably 

simpler, as the restocking orders consistently arrive at stores on the same 

weekdays every week (Gaur & Fisher (2004) [20]).  

(2) Similarly, from a transportation standpoint, these delivery patterns provide an 

opportunity to establish fundamental cyclic routes during each corresponding 

planning phase.  

(3) In the distribution center, the allocation of staff and the planning of shifts can 

be aligned with projected cumulative picking volumes, which are contingent 

upon the selected delivery patterns across all stores 

(4) Retailers generally adopt policies of periodic inventory assessment (Cachon 

(2001) [11]; Van Donselaar et al. (2010) [55]).
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Whenever the inventory on store shelves reaches or dips below a predetermined 

reorder level, an order for replenishment is initiated. The adoption of a cyclic strategy 

for ordering and delivery permits regular adjustments to reorder levels. This reduction 

in management oversight simplifies logistics planning in subsequent planning phases 

( Schöneberg et al. (2010) [43], Hübner et al. (2013) [26]). As a consequence, the 

chosen delivery patterns significantly impact efficiency within the operational 

segments of an internal retail supply chain, encompassing the distribution center, 

transportation, and in-store logistics. Since the intervals between orders are a product 

of the applied delivery pattern, a series of volume effects arise along the supply chain, 

exerting substantial influence on logistics costs ( Cachon (1999) [12]). Thus, the retail 

industry acknowledges the selection of delivery patterns as a vital lever to harmonize 

the requirements of the distribution center, transportation, and in-store aspects. Despite 

the complexity associated with constructing suitable models and tools, the majority of 

retailers haven't yet adopted comprehensive approaches that span all subsystems 

during the allocation of delivery patterns to stores. This underscores the need for 

effective decision support mechanisms to guide retail enterprises in achieving 

decisions that are either "optimal" or at the very least "nearly optimal. 

Total cost of the retail distribution systems depends on routing and fleet related costs 

on a great deal. Considering the role of the effective fleet sizing in profitability and 

efficiency of the distribution systems, we integrated fleet dimensioning and 

assignment to our model.  

Moving on to the problem explored in the second section of the thesis, it revolves 

around a collection of stores spread across a distinct geographical area. Here, the 

demand for the stores is deterministic but exhibits seasonal trends. The fleet utilized 

consists of both owned and rental heterogeneous trucks. Routing costs are 

approximated through clustering, where stores are assigned to seed points. 

Replenishments are conducted using suitable delivery patterns that not only fulfill the 

store demands but also minimize the overall cost of transportation, delivery pattern 

assignment, vehicle ownership/renting, and routing. 
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3.1.1 Motivation and related literature 

In our literature survey, we mainly focused on a review of retail-specific articles that 

define models for the problem of delivery pattern assignment and provide solutions to 

the developed models. Sternbeck & Kuhn (2014) [48] focuses on the tactical problem 

of determining delivery patterns based on which grocery stores are routinely supplied 

with products from various order categories by retail-owned distribution hubs. They 

aim at minimizing the costs occurring in the store and the transportation DC. The 

aspect which makes our problem different from the one studied in Sternbeck & Kuhn 

(2014) [48], is that we determine the fleet size and combination in two demand seasons 

as well as considering the costs of owning and renting fleets. They solve the suggested 

model by CPLEX and analyze the results. In general, DP planning papers incorporate 

pattern-dependent costs and examine their impact on total planning. They specifically 

consider how the delivery sizes each day are affected by the DPs chosen. Gaur & 

Fisher (2004) [20] present a method for determining a weekly delivery schedule based 

on a periodic inventory routing problem. Ronen & Goodhart (2008) [40] analyze a 

similar situation that includes DC expenses as well as additional extensions such as 

restricted picking capacity, a heterogeneous fleet, and daily minimum utilization rates 

for DC and transportation subsystems. They assign similar stores to clusters and set 

patterns for them as we do in our problem, however, it is not performed sequentially. 

Furthermore, they overlook in-store operations expenditures. Sternbeck & Kuhn 

(2014) [48] are the first to thoroughly study the logistical processes in DCs, 

transportation, and retail, as well as their dependencies on DPs. Their binary integer 

program minimizes the sum of all specified costs and is applied to a real-world 

instance. A cost matrix based on distance and order size is used to estimate 

transportation expenses. Actual tours are neglected. Holzapfel et al. (2016) [24] 

consider DC, transportation, and in-store logistics, and provide an innovative solution 

strategy that clusters stores and approximates transportation costs using Fisher & 

Jaikumar (1981) [19] logic. There are some similarities between the problem studied 

in Holzapfel et al. (2016) [24] and the problem we consider here. We both put 

customers into clusters based on their proximity and then assign delivery patterns. In-

store costs and transportation related costs are calculated the same way. Our problem 
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is distinguishable from the one developed in Holzapfel et al. (2016) [24] in the 

following aspects: 

(1) We consider monthly delivery patterns while they consider weekly delivery 

patterns. 

(2) The vehicle fleet is heterogeneous in terms of carrying capacity, cost per 

kilometer and ownership costs. 

(3) Owned and rental vehicle fleet is available in both seasons. 

(4) The seed point of a cluster is chosen based on the proximity of a customer to a 

dummy seed. 

(5) A limited number of stores can be served on daily clusters. 

Here, we develop a planning concept to define repetitive delivery patterns according 

to which stores of a grocery retailer are supplied from a distribution center. A delivery 

pattern is a set of weekdays on which a delivery from the DC arrives to a certain store 

on a regular basis during all normal weeks, i.e., weeks without public holidays, in a 

planning horizon. As Kuhn & Sternbeck (2013) [31] prove, the majority of grocery 

companies use such delivery patterns, which are designed considering the volume of 

sales and the size of the stores.  

According to Holzapfel et al. (2016) [24], using recurring and store-specific delivery 

patterns has various advantages:  

1) Scheduling the workers for the shelf replenishment process is significantly 

easier because order replenishments arrive at a shop on the same weekdays 

each week (Gaur & Fisher (2004) [20]) 

2) Similarly, in terms of transportation, delivery patterns allow for the creation of 

basic cyclic routes during each planning period. 

3) Staff deployment and shift planning can be altered at the DC based on predicted 

aggregate picking volumes, which are determined by the delivery patterns 

chosen across all stores. 

4) Periodic inventory reviews are typically implemented by retailers. When shelf 

inventory falls to or below a reorder level, a replenishment order is issued. 

Using a cyclic ordering and delivery strategy allows reorder levels to be 

adjusted on a frequent basis, which reduces overhead steering and simplifies 

logistics planning in following planning modules.  
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As a result, the delivery patterns chosen have a significant impact on the operational 

subsystems of an internal retail supply chain, such as DC, transportation, and in-store 

logistics. As mentioned previously, effective vehicle fleet utilization has a significant 

impact on profitability of the companies who own or plan to rent a fleet. Hence, 

bringing quality solutions to strategic fleet sizing and composition problem is a critical 

logistical decision. Strategic fleet sizing problem mainly focuses on optimizing the 

profitability of the companies by determining the most suitable fleet size and 

composition. Detailed routing problems is normally not included at a highly detailed 

level in strategic fleet management problems since routing decisions are daily 

operational decisions. Hence, in our study, we consider routing costs in an 

approximated fashion because detailed routing decisions changes daily and routing 

costs constitute relatively small percentage of the total cost.  

As far as we know, literature lacks research which considers integrated delivery pattern 

planning and fleet sizing as a whole. We made contribution to the literature in sense 

of developing a mixed integer programming model for the integrated delivery pattern 

planning and fleet sizing problem and proposing effective and novel solution 

techniques for the model considered. 

3.2 Problem Description And Mathematical Formulation 

This section, formulates a mixed integer programming model for selecting store-

specific delivery patterns, the fleet size and composition used for replenishing stores 

and transportation tour clusters to minimize the total costs of the whole retail 

distribution chain. This model is extension of the model suggested Dastjerd & Ertogral 

(2019) [14] Each of the stores denoted by 𝑓, 𝑓 ∈ 𝐹, is supplied from a DC considering 

the different delivery pattern 𝑟, 𝑟 ∈ 𝑅. Delivery pattern defines the days of delivery in 

a specific repetitive delivery period, which is, one month in our problem setting. Each 

delivery pattern 𝑟 is assigned to one store 𝑓 in season s and is denoted by the binary 

variable 𝑥𝑓𝑟𝑠 ∈ {0,1}. Cost of assigning a distinctive delivery pattern to a store is 

illustrated by 𝑐̂𝑓𝑟𝑠 which includes ordering costs occured in stores, handling costs for 

the stores and inventory holding costs of the stores in each season. We use an incidence 

matrix 𝑔𝑟𝑡 to indicate whether a pattern includes a specific day or not. If day 𝑡 is 

included in pattern 𝑟, the corresponding 𝑔𝑟𝑡value is 1, and otherwise it is equated to 
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zero. Here we assume that the delivery pattern of a store is repeated in all following 

periods, e.g., months, till a major change occurs. The products delivered to store 𝑓 on 

day 𝑡 in seaspn 𝑠 is quantified by 𝑝𝑎𝑙𝑙𝑓𝑟𝑡𝑠 and it is assumed that each day the stores 

receive an amount of the products that fulfill the required demand for all articles until 

next delivery day. The quantity is measured in terms of receiving pallets of goods. 

Each store is considered to have a receiving capacity 𝑐𝑎𝑝𝑓
𝑟𝑒𝑐 which ensures that the 

received products fit into the store capacity. Likewise, the DC is considered to have 

picking capacity on each day 𝑚𝑎𝑥𝑐𝑎𝑝𝑡
𝑝𝑖𝑐𝑘

 and 𝑚𝑖𝑛𝑐𝑎𝑝𝑡
𝑝𝑖𝑐𝑘

. The picking volume for 

store 𝑓 on day 𝑡 in season s is denoted by 𝑝𝑖𝑐𝑘𝑓𝑟𝑡𝑠.  

Additionally, the retailer is supposed to have two types of owned vehicles which differ 

in terms of capacity, cost per kilometer and ownership costs. In high demand periods 

retailers are allowed to rent vehicles from a third-party company. Each store is 

assigned to a delivery tour k, a vehicle type 𝑣, a pattern r, on day t and season s if 

pattern r includes day t and that specific store is assigned to pattern r, 𝑥𝑓𝑘𝑟𝑡𝑣𝑠 ∈ {0,1}. 

Binary variable 𝑦𝑘𝑟𝑡𝑣𝑠 indicates whether a vehicle type v is assigned to the delivery 

tour k, pattern r on day t in season s.  

The cost of serving a seed point and the additional costs occurring when a truck of type 

v assigned to a delivery tour 𝑘 adds store f  to its tour are distinguished by 𝑐𝑘𝑣
𝑡𝑟𝑒𝑛𝑠𝑡𝑜𝑢𝑟 

and 𝑐𝑘𝑣
𝑡𝑟𝑎𝑛𝑠𝑠𝑡𝑜𝑝

, respectively. Any point in the distribution area can serve as a seed 

point. Here, in this study, we used a combination of k-means clustering method and a 

version of the technique suggested by Savelsbergh (1990) [41]. The transportation and 

routing costs are approximated by the same logic as the one presented in Fisher & 

Jaikumar (1981) [19].  

Some assumptions we made in model development are as follows: 

• Stores receive deliveries a maximum of once per day. 

• Each store gets replenished by a store-specific monthly delivery pattern. 

• The monthly delivery pattern repeats all months of the entire planning horizon, 

e.g., one year. 

• Store delivery lead times are deterministic and predetermined.  

• The product range is homogeneous in the sense of products that can be 

packaged together on a common pallet or roll cage. 
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•  The transportation fleet is heterogeneous and unlimited.  

• There are owned and rental fleets available for different demand seasons. 

• Each truck can carry out a maximum of one delivery tour per day.  

• The capacity for receiving goods at a store is limited and implies limited 

storage space in the backroom.  

• The workload at the DC is restricted between a minimum and maximum level. 

• Each truck can visit a limited number of stores in a single tour on a single day 

of each delivery pattern. 

The notations used and the mathematical model is presented below: 

Sets: 

𝐹: Stores, 𝐹 = {1,2, … , 𝑓, … , |𝐹|} and 𝑓 = 0 symbolizing the DC. 

𝐾: Clusters, tours, 𝐾 = {1,2, … , 𝑘, . . |𝐾|}; |𝐾| quantifies the number of tours 

𝑅: Delivery patterns, 𝑅 =  {1,2, … , 𝑟, … , |𝑅|} 

𝑇: Days, 𝑇 =  {1,2, … , 𝑡, … , |𝑇|}, |𝑇| quantifies the length of one delivery cycle 

𝑉: Vehicles, 𝑉 =  {1,2, … , 𝑣, … , |𝑉|} 

S: Seasons, S= {1,2, … , |𝑆|}, 𝑠 = 1 and 𝑠 = 2 represent low and high seasons, respectively 

 

Parameters: 

𝐶𝑓𝑟𝑠
̂ : Costs at the subsystems DC and store, independent of tour setting, applying  

pattern 𝑟 for store 𝑓 in season 𝑠. 

𝐶𝑘𝑣
𝑡𝑟𝑎𝑛𝑠𝑡𝑜𝑢𝑟: Transportation costs supplying cluster 𝑘 with vehicle v  

𝐶𝑓𝑘𝑣
𝑡𝑟𝑎𝑛𝑠𝑠𝑡𝑜𝑝

: Stoppage costs for cluster 𝑘 with vehicle 𝑣 

𝐶𝑣
𝑜𝑤𝑛𝑒𝑟𝑠ℎ𝑖𝑝

: Ownership cost of vehicle 𝑣 

𝐶𝑣
𝑟𝑒𝑛𝑡𝑎𝑙: Renting cost of vehicle 𝑣 
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𝐶𝑎𝑝𝑓
𝑟𝑒𝑐:  Receiving capacity of store 𝑓 

𝐶𝑎𝑝𝑣
𝑠𝑡𝑜𝑟𝑒:  Number of stores that can be visited on a single delivery tour by vehicle 𝑣 

𝐶𝑎𝑝𝑣
𝑡𝑟𝑎𝑛𝑠: Truck 𝑣 capacity 

𝑔𝑟𝑡: Binary parameter; 1 if a delivery on day 𝑡 takes applying pattern 𝑟; otherwise 0 

𝑚𝑎𝑥𝐶𝑎𝑝𝑡
𝑝𝑖𝑐𝑘

: Maximum picking capacity to be used at DC on day 𝑡 

𝑚𝑖𝑛𝐶𝑎𝑝𝑡
𝑝𝑖𝑐𝑘

: Minimum picking capacity to be used at DC on day 𝑡 

𝑝𝑎𝑙𝑙𝑓𝑟𝑡𝑠: Pallets delivered on day 𝑡 to store 𝑓 applying pattern 𝑟 in season s 

𝑝𝑖𝑐𝑘𝑓𝑟𝑡𝑠: Picking effort at DC on day 𝑡 for store 𝑓 applying pattern 𝑟 in season 𝑠 

 

Decision Variables: 

𝑥𝑓𝑟𝑠: Binary variable; 1 if pattern 𝑟 is assigned to store 𝑓in season 𝑠; otherwise 0 

𝑥𝑓𝑘𝑟𝑡𝑣𝑠: Binary variable; 1 if pattern 𝑟 is assigned to store 𝑓 and store 𝑓 is assigned to  

cluster 𝑘 and vehicle 𝑣 on day 𝑡 in season 𝑠; otherwise 0 

𝑦𝑘𝑡𝑣𝑠: Total number of the vehicles of  𝑣 assigned to cluster 𝑘 on day 𝑡 in season 𝑠 

𝑁𝑣𝑠: Total number of assigned rented vehicle  𝑣 in season 𝑠 

𝑂𝑣: Total number of assigned owned vehicle 𝑣  

 

Mathematical Formulation: 

𝑇𝐶𝑠=∑ ∑ ∑ 𝐶𝑓𝑟̂𝑥𝑓𝑟𝑠𝑠∈𝑆𝑟∈𝑅𝑓∈𝐹 + ∑ ∑ ∑ ∑ 𝐶𝑘𝑣
𝑡𝑟𝑎𝑛𝑠𝑡𝑜𝑢𝑟𝑦𝑘𝑡𝑣𝑠𝑠∈𝑆𝑣∈𝑉 +𝑡∈𝑇𝑘∈𝐾

∑ ∑ ∑ ∑ ∑ ∑ 𝐶𝑓𝑘𝑣
𝑡𝑟𝑎𝑛𝑠𝑠𝑡𝑜𝑝

𝑥𝑓𝑘𝑟𝑡𝑣𝑠𝑠∈𝑆𝑣∈𝑉𝑡∈𝑇𝑟∈𝑅𝑘∈𝐾𝑓∈𝐹 +  ∑ ∑ 𝐶𝑣
𝑟𝑒𝑛𝑡𝑎𝑙𝑁𝑣𝑠𝑠∈𝑆𝑣∈𝑉  

 

Min TC =  ∑ 𝛼𝑠𝑇𝐶𝑠𝑠∈𝑆 +∑ 𝐶𝑣
𝑜𝑤𝑛𝑒𝑟𝑠ℎ𝑖𝑝

𝑂𝑣𝑣∈𝑉  

3.1 
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Subject to: 

∑ 𝑥𝑓𝑟𝑠𝑟∈𝑅 = 1                                                                               ∀𝑓 ∈ 𝐹, ∀𝑠 ∈ 𝑆 3.2 

∑ ∑ 𝑥𝑓𝑘𝑟𝑡𝑣𝑠 = 𝑘∈𝐾 𝑔𝑟𝑡𝑣∈𝑉 𝑥𝑓𝑟𝑠                     ∀ 𝑓 ∈ 𝐹, 𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 3.3 

𝑚𝑖𝑛𝐶𝑎𝑝𝑡
𝑝𝑖𝑐𝑘

≤ ∑ ∑ 𝑝𝑖𝑐𝑘𝑓𝑟𝑡𝑠𝑟∈𝑅𝑓∈𝐹 𝑥𝑓𝑟𝑠 ≤ 𝑚𝑎𝑥𝐶𝑎𝑝𝑡
𝑝𝑖𝑐𝑘

  ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 3.4 

∑ 𝑝𝑎𝑙𝑙𝑓𝑟𝑡𝑠𝑥𝑓𝑟𝑠 ≤ 𝐶𝑎𝑝𝑓
𝑟𝑒𝑐                  𝑟∈𝑅   ∀ 𝑓 ∈ 𝐹, 𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 3.5 

∑ ∑ 𝑝𝑎𝑙𝑙𝑓𝑟𝑡𝑠𝑟∈𝑅𝑓∈𝐹 𝑥𝑓𝑘𝑟𝑡𝑣𝑠 ≤ 𝐶𝑎𝑝𝑣
𝑡𝑟𝑎𝑛𝑠𝑦𝑘𝑡𝑣𝑠        ∀ 𝑣 ∈ 𝑉, 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 3.6 

∑ 𝑦𝑘𝑡𝑣𝑠𝑘∈𝐾 ≤ 𝑂𝑣   ∀ 𝑣 ∈ 𝑉\{|𝑉|}, 𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 3.7 

∑ 𝑦𝑘𝑡𝑣𝑠𝑘∈𝐾 ≤ 𝑁𝑣𝑠   ∀ 𝑣 = |𝑉|, 𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 3.8 

∑ ∑ 𝑔𝑟𝑡𝑥𝑓𝑘𝑟𝑡𝑣𝑠𝑓∈𝐹𝑟∈𝑅 ≤ 𝐶𝑎𝑝𝑣
𝑠𝑡𝑜𝑟𝑒       ∀ 𝑣 ∈ 𝑉, 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 3.9 

𝑥𝑓𝑟𝑠 ∈ {0,1}  ∀ 𝑓 ∈ 𝐹, 𝑟 ∈ 𝑅, ∀𝑠 ∈ 𝑆 3.10 

𝑥𝑓𝑘𝑟𝑡𝑣𝑠 ∈ {0,1}                ∀ 𝑓 ∈ 𝐹, 𝑟 ∈ 𝑅, 𝑣 ∈ 𝑉, 

𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇, ∀∈ 𝑆 

3.11 

𝑦𝑘𝑡𝑣𝑠 ∈∈ {0,1}           ∀ 𝑣 ∈ 𝑉, 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 3.12 

𝑁𝑣𝑠 ∈  𝑍≥0              ∀ 𝑣 ∈ 𝑉, ∀𝑠 ∈ 𝑆 3.13 

𝑂𝑣 ∈  𝑍≥0                ∀ 𝑣 ∈ 𝑉 3.14 

 

Our objective aims at minimizing the total annual costs caused by delivery pattern 

assignment, serving stores, adding stores to delivery tours, using owned and rented 

vehicle fleets. With the first constraint (3.2) we assure that in each of the two seasons 

only one delivery pattern is assigned to each of the stores. In second constraint (3.3), 

we assign a store to a vehicle and delivery tour with pattern 𝑟 on day t in season 𝑠 if 

and only if that store is assigned to pattern r and the day t is included in pattern r in 

that season. Constraint number (3.4) is used to assure that the picking effort at DC for 
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each day is between its maximum and minimum picking capacity. Store receiving 

capacity is considered in constraint number (3.5). Constraint (3.6) restricts that the 

number of pallets transported by vehicle 𝑣 on a delivery tour 𝑘 on day 𝑡 in season 𝑠 

must be less than or equal to the vehicle’s capacity. By constraints (3.7) and (3.8) we 

calculate the total number of owned and rented vehicles which are used to perform the 

delivery operations. Due to time, distance and limited vehicle capacities each vehicle 

can serve a limited number of stores in a tour on a specific delivery day. We assured 

this by adding constraint (3.9) to our model. Constraints (3.10)-(3.14) gives the domain 

for the decision variables. 

3.3 Complexity Analysis Of The Problem 

In this section we show that the problem tackled in here is a NP-Hard problem through 

polynomial time reduction from the “One- dimensional bin packing problem” which 

is proved to be strongly NP hard in E. G. Coffman et al. (1997). In the bin packing 

problem, objects of different volumes must be packed into a finite number of bins or 

containers each of volume V in a way that minimizes the number of bins used.  

Considering our problem, under some assumptions we can transform the current 

problem to bin packing problem in pseudo-polynomial time: 

• A single season 

• Single type owned vehicles 

• single delivery tour/seed point 

• single delivery pattern containing a single delivery day 

• 𝐶𝑘𝑣
𝑡𝑟𝑎𝑛𝑠𝑡𝑜𝑢𝑟 = 1 

• 𝐶𝑓𝑟̂ =  𝐶𝑓𝑘𝑣
𝑡𝑟𝑎𝑛𝑠𝑠𝑡𝑜𝑝

= 𝐶𝑣
𝑜𝑤𝑛𝑒𝑟𝑠ℎ𝑖𝑝

= 0 

• 𝐶𝑣
𝑟𝑒𝑛𝑡𝑎𝑙= ∞ 

Under these assumptions our problem turns into a one-dimensional bin packing 

problem, where we try to minimize the number of vehicles.  

3.4 Solution Techniques 

As solution method, we implemented three different versions of Fix and optimize 

heuristic with an additional improvement step. The Fix and Optimize heuristic is a 

two-phase approach which works by dividing a problem into smaller subproblems that 
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are solved repeatedly. In the first phase, we break the problem down into 

subproblems/subgroups of variables and then solve it by setting variables in only one 

subproblem as integers, and taking the remaining variables as either fixed to the values 

found in the previous iterations or as linear variables. The solution for binary variables 

found in an iteration is fixed and used in the next one. This procedure is repeated until 

all variable values are found. The exact steps of first phase are given below. 

FO heuristic –Phase I 

1. Divide the customers into P sub groups with equal number of customers, or as 

equal as possible. Divide the decision variables in to 𝑃 sub groups 

corresponding to 𝑃 customer groups. Let 𝐴𝑖 be the set of binary variables in ith 

sub group. 

2. Set the iteration counter 𝑖 to 1. 

3. If 𝑖 > 1, Fix the binary variables in 𝐴𝑗 to the values of variables in iteration 

𝑖 − 1 for 𝑗 =  1. . 𝑖 − 1. 

4. Set the variables in 𝐴𝑖 as binary variables.  

5. Relax the binary variables in 𝐴𝑗 for 𝑗 =  𝑖 +  1. . 𝑃 as linear variables.  

6. Solve the complete model  

7. Set 𝑖 =  𝑖 +  1. If 𝑖 <=  𝑃 go to step 3. If 𝑖 >  𝑃, STOP.  

The second phase aims at bringing improvement to the solution of the first phase. At 

each iteration, we set variables of one subproblem as binaries and reoptimize them 

while we keep all other variables fixed to the solution found in the previous iteration. 

If there is any improvement in the solution, the results are saved and procedure is 

continued till all the subproblems are checked. The steps for the second phase are given 

below. 

FO heuristic –Phase II 

1. Take the solution from Phase I as the current solution. 

2. Set the iteration counter i to 1. 
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3. If 𝑖 = 1 Fix the values of variables in 𝐴𝑗 for 𝑗 = 𝑖 + 1. . . 𝑃 to the values found 

in the current solution. 

4. If 𝑖 > 1 Fix the values of variables in 𝐴𝑗 for 𝑗 = 1. . . 𝑖 − 1 and 𝑗 = 𝑖 + 1. . 𝑃 to 

the values found in iteration 𝑖 − 1 

5. Define the variables in 𝐴𝑖 as binary variables. (Note that all other variables in 

other subgroups are fixed) 

6. Solve the complete model and set 𝑖 =  𝑖 +  1. 

7. Check the objective value, if the objective value is better than best solution so 

far and 𝑖 <  𝑃, update the best solution as the current solution (improved 

solution) and go to step 4. If no improvement occurred in the current iteration 

and 𝑖 <  𝑃 go to step 4. If no improvement occurred in the current iteration 

and 𝑖 >  𝑃 STOP and RETURN the solution. 

Fix and Optimize versions proposed here differ in terms of subproblem generation 

criterion: 

1. Store based subproblems 

2. Delivery day based subproblems 

3. Cluster based subproblems 

3.4.1 Store based subproblems 

As it is apparent from the title, each sub group contains a fixed number of stores and 

the variables for one of those groups is defined as binaries and other groups are left as 

LPs. The solution of each iteration is fixed for the binary part and the iterations 

continue till all the variables are set to binaries or integers. The steps for the second 

step are the same as the ones described in previous reports. 

3.4.2 Delivery day based subproblems 

In delivery day based subproblem generation, we divide problem based on planning 

period. At each iteration, we define variables for a set of a number of 𝑡 values 

(depending on the appropriate size of subproblems) as IPs and relax variables in other 

subproblems. In FO, the matter is always about the trade-off between solution quality 

and solution time reduction. That is, when choosing larger sized subproblems, the 
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higher number of IP variables produce a better solution in terms of deviation from 

optimal/best bounds but may cause solution durations to increase significantly. On the 

other hand, smaller sized subproblems, may produce a worse solution in much more 

shorter time due the higher number of relaxed variables. So, subproblem size 

determination is a key decision in these types of heuristics. 

3.4.3 Cluster based subproblems 

In this version, we generated a new index set for the customers based on the ones that 

are served on the same delivery tour or are assigned to the same seed point. In 

preprocessing step for model solution, we used K-means algorithm for finding seed 

points and developed a model for assigning customer to their nearest seeds. Thus, 

when customers of the same delivery tour are taken as a subproblem in fact the 

customers which are nearest to each other are put into the same subproblem. FO, 

divides the main problem into smaller subproblems for one of which the variables are 

defined as binaries and for the others as linearly relaxed ones.  

Stores are assigned to a seed point/cluster in preprocessing step by using a k-means 

clustering algorithm and a mathematical model. Then, the indices for the stores which 

are assigned to the same cluster are stored and passed to the FO for being used in 

subproblem generation. In this version of FO, we put the customers of same clusters 

in the same subproblem and apply FO steps. The logic behind this division criteria is 

that the customers are assigned to the seeds/clusters which are closest to them in terms 

of distances. In our main model, we aim at minimizing total annual costs where one of 

the cost components is the cost of transportation that considers distances from stores 

to seed points and from stores to other stores. When stores in the same cluster are put 

into the same subproblem, the distance is automatically minimized hence the solution 

quality increases.  

3.5 Improvement Algorithm 

We introduce a two-phase enhancement algorithm aimed at further refining the 

outcomes achieved through the FO approach. Upon dissecting the characteristics of 

the solutions produced by FO, it becomes apparent that the notable deviations from 

best-bound values primarily stem from the excessive utilization of vehicles. Given that 
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vehicle ownership costs constitute a predominant expense in our context, the addition 

of an extra vehicle compared to the optimal solution significantly impacts the objective 

function's value. The detailed procedure during the steps of the improvement algorithm 

is described in the following subsections. 

3.5.1 Improvement algorithm phase I 

The enhancement algorithm concentrates on the optimization of fleet composition and 

size. In the initial phase, we meticulously investigate solutions in which each vehicle 

type in the FO-derived solution is systematically augmented and reduced by one unit, 

while keeping the quantities of other vehicles constant. 

In the first phase of the algorithm, after fixing all the variables to integer values by fix 

and optimize implementation, the final vehicle fleet composition is saved in an array 

𝑉 as values for 𝑥. Next, one large vehicle is added to the fleet and the total number of 

large vehicles is used as an upper bound for large vehicle assignment (the new vehicle 

set is called 𝑉′). If the objective value for large vehicle addition, 𝐶𝑜𝑠𝑡′  is smaller than 

the value from the FO, 𝐶𝑜𝑠𝑡, we add another large vehicle to the fleet and update the 

objective function value. The process goes on in this fashion until there is no 

improvement in the total cost. On the other hand, if no improvements occur, the 

algorithm moves to the next step. That is, one large vehicle is excluded from the fixed 

vehicles set taken from FO. This operation goes on again until there is no improvement 

in the total cost. The next move is to add a small vehicle to the fleet and repeat it until 

stops improving the objective. The last step of first improvement phase is to exclude 

one small vehicle from the fleet and reapply FO to improve the objective function 

value as much as possible. 

3.5.2 Improvement algorithm phase II 

In the second phase of the improvement approach, we defined two neighborhoods for 

the existing solution: exclude one large vehicle and add a small vehicle instead and 

remove two small vehicles and add a large vehicle to the fleet. The revised vehicle set 

𝑉′′ is used as upper bound for vehicle assignment constraint. FO is applied to the 

problem using defined neighbors. If the solution from second step, 𝐶𝑜𝑠𝑡′′ is better than 

the one from the first step, 𝐶𝑜𝑠𝑡′, the solution is updated and first phase is re-started 
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using new vehicle composition. If not, algorithm stops and reports the solution for the 

problem.  

The flowchart for improvement algorithm steps is given in Figure 3.1. 

Take Cost and V 

from FO

Generate neighbor 

V 

Apply FO get Cost 

Cost  Cost
Cost = Cost 

V = V 

Generate neighbor 

V  

Apply FO and get 

Cost  

Cost     Cost 

Stop and save the 

results

Cost = Cost  

V = V  

Yes

No

Yes

No

  

Figure 3.1: Steps for improvement algorithm. 

 

3.6 Numerical Analysis 

For solving the MIP, we need to pre-calculate some parameters at first. That is, the 

location of seeds should be known in order to calculate the transportation and tour 

generation costs. In the following subsections, we describe the process to seed 

generation, transportation cost calculation and also explain the dataset generation 

method. 
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3.6.1 Seed point generation 

Number of clusters, |𝐾|, is needed as an input for the model. Number of clusters is 

equal to the maximum number of feasible delivery tours per day and the number of the 

available trucks for seed point generation. We approximated this number by dividing 

the number of stores by the maximum possible number of stores which can be visited 

in a single tour/cluster and multiplied the results with seasonal increase parameter 1.5; 

that is, for example for 𝑓 = 20 we have 𝑘 = ⌈20/6⌉ ∗ 1.5 = 6. Rounding up this 

quantity to the next integer value results in the number of trucks that are necessary to 

ensure that all stores can receive their required products on all days of the delivery 

cycle. This approximation generates a reasonable number of trucks and reasonable 

delivery cluster sizes. In the unlikely case that the number of trucks approximated does 

not lead to a feasible solution, the number is increased by one until a feasible solution 

can be generated. As a result, we have 6, 9, 12 and 18 seed points/clusters for 20, 30, 

40 and 60 stores, respectively. 

After approximating the number of possible seeds and trucks, we use the following 

algorithm in order to determine the exact seed locations and generate delivery tours: 

(1) Defines the initial locations of seed points for all clusters k. There are many 

different ways to generate initial seeds, here we used the points which are 

randomly distributed along the delivery area. Random coordinates are 

generated using MATLAB and then feed into JAVA for the rest of the 

procedure. Distance between seed points, represented by 𝑐𝑟𝑑𝑆𝑃𝑘
𝑥(𝑙)

 and 

𝑐𝑟𝑑𝑆𝑃𝑘
𝑥(𝑙)

, and the store coordinates, given by 𝑐𝑟𝑑𝑆𝑡𝑓
𝑥 and 𝑐𝑟𝑑𝑆𝑡𝑓

𝑦
 is 

calculated using a Euclidean metric. The iteration index is denoted by 𝑙. 

(2) Step 2 entails assigning clusters and determining the location of seed points 

(2.1) An MIP is used to minimize the travel distances TD between seed 

points and their associated stores by assigning store 𝑓 to cluster 𝑘, 

expressed by 𝑧𝑓,𝑘 ∈ {0,1} (Table 3.1 presents the notations for the MIP). 

Each store is assigned exactly to one cluster (see (2)). Constraint (3) 

ensures that the volume to be delivered to all stores assigned to a specific 

cluster- assuming daily deliveries- must be equal or less than the truck 

capacity, 𝑐𝑎𝑝𝑡𝑟𝑎𝑛𝑠,on each day of the delivery cycle. This guarantees that 
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all of the stores in a certain cluster can potentially be supplied on one single 

tour each day. 

 

Table 3.1: Notations used in cluster generation model. 

Parameters 

𝑣𝑜𝑙𝑓,𝑡  Demand volume at store 𝑓 on day 𝑡, measured in 

pallets 

𝑐𝑟𝑑𝑆𝑡𝑓
𝑥, 𝑐𝑟𝑑𝑆𝑡𝑓

𝑦
  𝑥 and 𝑦 coordinates of store f 

Decision and auxiliary 

variables 

 

𝑐𝑓,𝑘
𝑑𝑖𝑠𝑡  Distance between store f and the seed point of 

cluster k 

𝑐𝑟𝑑𝑆𝑃𝑘
𝑥, 𝑐𝑟𝑑𝑆𝑃𝑘

𝑦
  x and y coordinates if the seed point of cluster k  

𝑧𝑓,𝑘  Binary variable; 1 if store f is assigned to cluster k; 

otherwise, 0 

 

𝑀𝑖𝑛 𝑇𝐷𝑙 =  ∑ ∑ 𝑐𝑓,𝑘
𝑑𝑖𝑠𝑡(𝑙)

. 𝑧𝑓,𝑘𝑘∈𝐾𝑓∈𝐹    (3.15) 

s.t.   

∑ 𝑧𝑓,𝑘 = 1𝑘∈𝐾   ∀𝑓 ∈ 𝐹 (3.16) 

∑ 𝑣𝑜𝑙𝑓,𝑡. 𝑧𝑓,𝑘 ≤ 𝑐𝑎𝑝𝑡𝑟𝑎𝑛𝑠
𝑓∈𝐹   ∀𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇 (3.17) 

𝑧𝑓,𝑘 ∈ {0,1}  ∀𝑓 ∈ 𝐹, 𝑘 ∈ 𝐾 (3.18) 
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    (2.2) If 𝑇𝐷(𝑙) is not equal to the previous iteration 𝑇𝐷(𝑙−1) or at least there is a 

difference greater than a small number 𝜖 between them, we update the seed point 

coordinates for the iteration 𝑙 + 1 as follows: 

𝑐𝑟𝑑𝑆𝑃𝑘
𝑥(𝑙+1)

=  ∑ 𝑐𝑟𝑑𝑆𝑇𝑓
𝑥

𝑓∈𝐹 . 𝑧𝑓,𝑘
(𝑙) ∑ 𝑧𝑓,𝑘

(𝑙)
𝑓∈𝐹⁄   

𝑐𝑟𝑑𝑆𝑃𝑘
𝑦(𝑙+1)

=  ∑ 𝑐𝑟𝑑𝑆𝑇𝑓
𝑦

𝑓∈𝐹 . 𝑧𝑓,𝑘
(𝑙) ∑ 𝑧𝑓,𝑘

(𝑙)
𝑓∈𝐹⁄   

That is, the coordinates of the seeds in iteration 𝑙 + 1 is set to the mean of the 

coordinates of the stores assigned within the previous iteration. Then the value of 

𝑐𝑓,𝑘
𝑑𝑖𝑠𝑡(𝑙+1)

 is updated and this procedure continues until there is no further 

improvement. The steps for k-means algorithm are described below: 

(1)  Initialize seed points and distances 

             Set 𝑙 = 1 and 𝑇𝐷(0) = 0 

              Initialize 𝑐𝑟𝑑𝑆𝑃𝑘
𝑥(𝑙)

 and 𝑐𝑟𝑑𝑆𝑃𝑘
𝑦(𝑙)

     ∀𝑘 ∈ 𝐾 

              Calculate 𝑐𝑓,𝑘
𝑑𝑖𝑠𝑡(𝑙)

              ∀𝑓 ∈ 𝐹, 𝑘 ∈ 𝐾 

(2) Iteration 

             (2.1) Assign stores to the clusters by solving the MIP according to  

(3.15)- (3.18) 

            (2.2) Check objective value and update location of seed point if necessary 

              If |𝑇𝐷(𝑙) − 𝑇𝐷(𝑙−1)| > 𝜖 then 

             Set 𝑙 = 𝑙 + 1, calculate 𝑐𝑟𝑑𝑆𝑃𝑘
𝑥(𝑙)

 and 𝑐𝑟𝑑𝑆𝑃𝑘
𝑦(𝑙)

    ∀𝑘 ∈ 𝐾   and  𝑐𝑓,𝑘
𝑑𝑖𝑠𝑡(𝑙)

     

∀𝑓 ∈ 𝐹, 𝑘 ∈ 𝐾 

            Continue with (2.1) 

Else stop iteration 
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The process yields the location of the seed points for each cluster 𝑘, as well as an 

exhaustive and disjunctive assignment of all stores f to a single cluster 𝑘. The 

calculation of the transportation cost parameters 𝑐𝑘𝑣
𝑡𝑟𝑎𝑛𝑠𝑡𝑜𝑢𝑟 and 𝑐𝑓𝑘𝑣

𝑡𝑟𝑎𝑛𝑠𝑡𝑜𝑝
 is based on 

this assignment. 

3.6.2 Transportation and routing cost calculation 

The calculation of 𝑐𝑘𝑣
𝑡𝑟𝑎𝑛𝑠𝑡𝑜𝑢𝑟 and 𝑐𝑓𝑘𝑣

𝑡𝑟𝑎𝑛𝑠𝑡𝑜𝑝
 is performed based on the method 

suggested in Holzapfel et al. (2016) [24]. They apply the logic of Fisher & Jaikumar 

(1981) [19] and approximate the real tour costs on a tactical level.  

Figure 3.2 illustrates the determination of the two transportation cost parameters for a 

certain assignment on the basis of distance- dependent transportation costs. For 

example, there are two possibilities for supplying store 4 from the DC, i.e., f = 0: either 

on a tour based on the cluster with the seed point A or on a cluster with the seed point 

B (A, B ∈ K). The calculation example shows that assigning store 4 to cluster A results 

in lower costs than assigning it to cluster B. Supplying store 4 as part of the tour of 

cluster B, however, can be advantageous, if for example stores 1, 2 and 3 are not 

supplied on certain days, but stores 5 and 6 are. Then it is favorable to include store 4 

on a tour with seed point B and not to start a new tour with seed point A on this day. 

In our dataset we took cost per kilometer as 7,8.5 and 10 for small owned, large owned 

and rental vehicle, respectively. Ownership and rental cost are taken as 70,85 and 100. 

In terms of carrying capacity, we assumed that small trucks are capable of carrying 

average monthly demand of the stores with a tolerance of 30 pallets. Hence, the 

capacities are 110,160 and 160 pallets, respectively.  

 

𝑐𝐴
𝑡𝑟𝑎𝑛𝑠𝑡𝑜𝑢𝑟 = 2. 𝑐0𝐴 = 2.6 = 12  

𝑐𝐵
𝑡𝑟𝑎𝑛𝑠𝑡𝑜𝑢𝑟 = 2. 𝑐0𝐵 = 2.4 = 8  

𝑐4𝐴
𝑡𝑟𝑎𝑛𝑠𝑡𝑜𝑝 = 𝑐04 + 𝑐4𝐴 − 𝑐0𝐴 = 6 + 2 − 7 = 1  

𝑐4𝐵
𝑡𝑟𝑎𝑛𝑠𝑡𝑜𝑝 = 𝑐04 + 𝑐4𝐵 − 𝑐0𝐵 = 6 + 12 − 4 = 14  
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Figure 3.2: Example of calculating cost parameters 𝒄𝒌𝒗
𝒕𝒓𝒂𝒏𝒔𝒕𝒐𝒖𝒓 and 𝒄𝒇𝒌𝒗

𝒕𝒓𝒂𝒏𝒔𝒔𝒕𝒐𝒑
. 
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3.6.3 Dataset generation 

We defined 8 general scenarios based on the combination of two different sizes of 

delivery areas, i.e., “District” (200 kilometer ×200 kilometer) and “State” (400 

kilometer × 400 kilometer), three different store quantities located in these areas, i.e., 

|𝐹| = 20, 30, 40,60; and one delivery pattern sizes i.e., |𝑅| = 46. According to Kuhn 

& Sternbeck (2013) [31], several managers mentioned that they prefer order patterns 

with equidistant intervals between the deliveries. Hence, we designed our delivery 

patterns in a way that the interval between two consecutive replenishments is as equal 

as possible. Scenarios and their corresponding IDs are illustrated below in Table 3.2. 
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Table 3.2: Scenario IDs. 

Scenarios Number of stores Area size Number of patterns 

1 20 200*200 46 

2 20 400*400 46 

3 30 200*200 46 

4 30 400*400 46 

5 40 200*200 46 

6 40 400*400 46 

7 60 200*200 46 

8 60 400*400 46 

 

Daily demand for each of the corresponding store sizes was generated randomly in the 

range [1,10]. In our case, we have 4 months of low and 8 months of high demand 

seasons in a typical delivery year. The daily store demands in high season periods are 

assumed to be 1.5 times the daily demand quantities during the low season periods. 

Delivery patterns are taken as four weeks of one month which will be repeated during 

a year without any change. For further illustration, a part of the patterns is expressed 

in Table 3.3. 

Table 3.3: Part of days for delivery pattern of size |𝑹| = 𝟒𝟔. 

 

M T W T F S M T W T F S M T W T F S M T W T F S 

1 X 0 0 0 0 0 X 0 0 0 0 0 X 0 0 0 0 0 X 0 0 0 0 0 

2 0 X 0 0 0 0 0 X 0 0 0 0 0 X 0 0 0 0 0 X 0 0 0 0 

3 0 0 X 0 0 0 0 0 X 0 0 0 0 0 X 0 0 0 0 0 X 0 0 0 

4 0 0 0 X 0 0 0 0 0 X 0 0 0 0 0 X 0 0 0 0 0 X 0 0 

5 0 0 0 0 X 0 0 0 0 0 X 0 0 0 0 0 X 0 0 0 0 0 X 0 

6 0 0 0 0 0 X 0 0 0 0 0 X 0 0 0 0 0 X 0 0 0 0 0 X 

7 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0 
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8 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 

9 X 0 0 X 0 0 X 0 0 X 0 0 X 0 0 X 0 0 X 0 0 X 0 0 

10 0 X 0 0 X 0 0 X 0 0 X 0 0 X 0 0 X 0 0 X 0 0 X 0 

11 0 0 X 0 0 X 0 0 X 0 0 X 0 0 X 0 0 X 0 0 X 0 0 X 

12 X 0 0 0 0 0 0 0 0 0 0 0 X 0 0 0 0 0 0 0 0 0 0 0 

13 0 X 0 0 0 0 0 0 0 0 0 0 0 X 0 0 0 0 0 0 0 0 0 0 

14 0 0 X 0 0 0 0 0 0 0 0 0 0 0 X 0 0 0 0 0 0 0 0 0 

15 0 0 0 X 0 0 0 0 0 0 0 0 0 0 0 X 0 0 0 0 0 0 0 0 

16 0 0 0 0 X 0 0 0 0 0 0 0 0 0 0 0 X 0 0 0 0 0 0 0 

17 0 0 0 0 0 X 0 0 0 0 0 0 0 0 0 0 0 X 0 0 0 0 0 0 

18 X 0 0 0 0 X 0 0 0 0 0 0 X 0 0 0 0 X 0 0 0 0 0 0 

19 X X X X X X X X X X X X X X X X X X X X X X X X 

 

Cost parameters were generated based on the percentage chart presented in Van Zelst 

et al. (2009) [56]. It is proved that, the operational logistical costs in the retail supply 

chain for non-perishable goods follows the trend given in Figure 3.3. 

Figure 3.3: operational logistical costs in the retail supply chain for non-perishable 

goods. 

 

Considering Figure 3.3, related cost parameters are presented in Table 3.4: 
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Table 3.4:Operational costs of stores. 

Operational Costs at 

Stores 

Value 

Handling  50 

Ordering 140 

Inventory holding 20 

 

Receiving capacities for each of the stores is equal to the highest delivery volume 

among all of the different delivery patterns. Maximum picking capacity at DC is 

approximated with the total picking effort assuming all outlets are supplied daily with 

their average daily demand volume in high season periods. Minimum picking capacity 

is taken as 10% of the maximum picking effort.  

3.7 Numerical Results 

In this section, we analyze the results from CPLEX and investigate the performance 

of the suggested heuristic versions.  

3.7.1 CPLEX results 

Results from CPLEX are represented in Table 3.5. In the first row of the table, V1 and 

V2 represent the total number of small and large owned vehicles used in both seasons. 

R1 and R2 show the number of vehicles that were rented for low and high demand 

seasons. All of the problems are solved under a time limit of 10800 seconds. None of 

the problems were solved to optimality and the average deviation percentage from 

optimal objective function value is equal to 2.72% . As it is seen from Table 3.5, the 

gaps from optimal solution increase with the increase in area size and store numbers. 

Combination of vehicle fleet changes with the problem size, as well. Generally, 

smaller trucks are preferred for carrying out the distribution operations. As the number 

of stores increase, we observe that the total number of used vehicles increase. This 

pattern is specially noticed in high demand seasons. The fact behind this increase is 

that the size of the batches to be carried grow as the number of stores increase and the 

carrying capacity limitation necessitates assigning more vehicles for satisfying the 

needs of stores. 
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Table 3.5: CPLEX results. 

 

CPLEX  

Best 

Bounds 

Gap V1 V2 R1 R2 CPU (s) 

1 1.75E+08 0.60% 2 0 0 0 10814.57 

2 1.93E+08 3.75% 3 0 0 0 10825.89 

3 2.76E+08 1.56% 4 1 0 0 10844.58 

4 2.98E+08 2.22% 5 1 0 0 10830.77 

5 3.97E+08 2.03% 7 1 1 1 10856.71 

6 4.42E+08 4.33% 6 2 1 1 10852.25 

7 6.20E+08 2.73% 7 3 1 1 10896.24 

8 6.96E+08 4.51% 7 3 1 0 10894.39 

 

3.7.2 Results for FO 

In this section we discuss the results from three different types of the FO heuristic and 

the additional improvement step we applied to the existing problem settings. Results 

are classified and investigated under 3 categories: percentage deviations from best 

bounds of the CPLEX, computational times and fleet composition. 

Gaps from best bounds for FO-I, FO-II and FO-III are presented in Table 3.6. FO-I, is 

the fix and optimize version in which the subproblems are generated based on stores. 

Main problem is divided to subproblems each containing five stores and the FO 

procedure is implemented. Objective function values for this version of the FO are at 

most 3.41% away from the best bounds obtained from CPLEX which means that the 

results may be closer to the optimal value.  

FO-II and FO-III, show the same performance as well, the gaps from best bounds for 

FO-II is at most 0.94% and for the FO-III it is 4.53%. FO-II is the version in which the 

subproblems are generated based on delivery days. The fixation manner for delivery 

days influences the objective function value the most. It influences inventory, 

transportation and fleet ownership/rental costs. It is obvious that FO-II makes better 

decisions in terms of delivery days which leads into lower difference between best 

bounds and FO-II solutions.  
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In FO-III the stores on the same delivery tour are put in the same subproblem. The 

rationale behind this division type is that the customers are assigned to the clusters 

based on their proximity. Hence, the distance minimization is done in a much more 

effective manner in this type of subproblem division. On the other hand, the obligation 

for serving some specific stores all together in a single delivery tour limits the fleet 

and pattern assignments. Truck capacities are fixed and limited, since patterns and 

delivery days are selected in a way that trucks can carry demands of the all stores in a 

single tour. As we stated, each delivery tour is served using a single truck on a specific 

day. To be more illustrative, take the example of problem number 2. Gap for FO-II is 

0.87% while gaps for FO-III is equal to 4.53%. Comparing the detailed solution values 

for these to heuristic versions, it is spotted that the delivery day based division utilizes 

fewer daily patterns than the cluster based division. This detail proves the fact that 

carrying all the demands for all the stores on the same delivery tour in a specific day 

forces the model to use smaller batch sizes and more frequent deliveries. This results 

in the growth of the transportation costs. Comparing the transportation cost 

components for FO-II and FO-III, which are equal to 4.00E+07 and 5.21E+07, 

respectively, confirms the difference in pattern selection manner for these methods. 

Inventory related costs are the components which are greatly influenced by pattern 

selection as well.  

Comparing the heuristics with each other, it is obvious that FO-II outperforms the other 

two versions with an average gap of 0.56% which is the least among all. 

For further evaluation of FO-II, 5 random instances are generated for each problem 

setting. These instances differ in terms of demand value, store and seed point 

coordinates. That is, in total, FO-II is tested on 40 instances and the average gaps and 

solution times are presented in Table 3.7. As it is obvious, the percentage deviations 

are under 2% which is a prove for efficiency of suggested method in terms of 

producing quality solutions. 

Table 3.8 demonstrates the solution durations for three heuristic versions. As we 

previously mentioned, the problems are first solved by CPLEX within a time limit of 

three hours and the best bounds and gaps from optimal solution is reported. As it is 

obvious from Table 3.8, suggested heuristic methods are efficient in terms of 

computational time since the average CPU times in second for all of them is under 3 
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hours. There is not any meaningful difference between solution times among three 

heuristic versions but we can claim that FO-II performs better than the other two 

methods. The largest computation time belongs to FO-I, which is due the fact that the 

subproblem handling order and generation criteria directly affects the complexity of 

each subproblem. Considering average solution times presented in Table 3.7, it is seen 

that all of the problems are solved in a period under 3 hours which is the time limit we 

set for the CPLEX. That is, FO-II is able to yield quality solutions n acceptable 

durations. 

Considering fleet composition, as it is presented in Table 3.9, there is a general pattern 

being repeated. That is, in heuristic methods, the number of assigned vehicles are less 

than the ones in CPLEX solution but the total costs are higher. Investigating cost 

components and pattern-delivery day combinations, we found out that heuristics 

generally prefer deliveries with smaller batches which results in less vehicle utilization 

and more frequent replenishments. This replenishment schedule, reduces vehicle 

ownership/rental cost and inventory holding costs but increases transportation costs 

significantly. 

Overall, we can claim that the proposed FO versions and improvement step are 

efficient solution techniques in our problem case. 

Table 3.6: Percentage deviations from best bounds for FO-I, FO-II and FO-III. 

 

FO-I FO-II FO-III 

1 2.93% 0.70% 3.03% 

2 3.41% 0.87% 4.53% 

3 0.98% 0.20% 4.13% 

4 1.71% 0.21% 1.59% 

5 0.76% 0.42% 0.87% 

6 0.29% 0.94% 1.13% 

7 0.59% 0.75% 0.86% 

8 0.21% 0.38% 2.67% 

Average 1.36% 0.56% 2.35% 
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Table 3.7: Average gaps and CPU (s) times for FO-II. 

 

Average gaps  Average CPU 

1 0.70% 632.99 

2 1.55% 840.24 

3 0.51% 1060.99 

4 0.58% 2742.49 

5 0.46% 2228.59 

6 1.20% 3047.9 

7 1.06% 9719.82 

8 0.55% 7849.91 

 

Table 3.8: CPU times in seconds for FO-I, FO-II and FO-III. 

 

FO-I FO-II FO-III 

1 708.09 388.46 616.20 

2 501.84 805.13 462.79 

3 1704.38 858.31 2227.71 

4 2262.84 3229.64 1456.04 

5 4560.39 2516.61 6356.74 

6 8277.98 3650.72 8059.22 

7 8700.93 7378.76 3690.91 

8 9120.68 7528.35 3502.99 

Average 4479.64 3294.49 3296.58 

 

Table 3.9: Fleet composition for CPLEX, FO-I, FO-II and FO-III. 

 

CPLEX FO-I FO-II FO-III  

V1 V2 R2 R2 V1 V2 R2 R2 V1 V2 R2 R2 V1 V2 R2 R2 

1 2 0 0 0 3 0 0 0 3 0 0 0 3 0 0 0 

2 3 0 0 0 3 0 0 0 3 0 0 0 3 0 0 0 

3 4 1 0 0 3 0 0 0 4 1 0 0 4 0 0 0 

4 5 1 0 0 4 1 0 0 4 0 0 0 5 0 0 0 

5 7 1 1 1 5 0 1 0 5 0 0 0 5 0 0 0 
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6 6 2 1 1 5 0 1 0 4 0 0 1 5 0 0 0 

7 7 3 1 1 9 0 0 0 7 0 0 0 9 0 0 0 

8 7 3 1 0 9 1 0 0 7 0 0 0 8 0 0 0 

 

3.8 Conclusion 

In the second part of this thesis, we first developed a mixed integer programming 

model for the integrated fleet sizing and replenishment planning problem with delivery 

patterns. Empirical findings support the notion that the majority of grocery retailers 

implement these delivery patterns, often customized according to their sales volumes 

and the physical dimensions of their stores. Holzapfel et al. (2016) [24] highlight the 

numerous advantages of employing recurring and store-specific delivery patterns in 

retail logistics as simplified workforce scheduling, efficient transportation planning, 

dynamic staff deployment, and streamlined inventory management. The choice of 

delivery patterns exerts a substantial influence on the functioning of operational 

components within an internal retail supply chain, including the distribution center 

(DC), transportation, and in-store logistics. Effective utilization of vehicle fleets 

significantly affects the profitability of companies that own or plan to rent fleets. 

Consequently, addressing the strategic fleet sizing and composition problem emerges 

as a critical logistical decision. This problem primarily aims to optimize a company's 

profitability by determining the most suitable fleet size and composition. Unlike 

detailed routing problems, which involve daily operational decisions, strategic fleet 

management problems typically do not delve into routing intricacies at a highly 

detailed level. As a result, our study approximates routing costs because detailed 

routing decisions vary daily and constitute a relatively small percentage of the total 

cost. 

Next, a comprehensive examination of the results obtained from three distinct 

variations of the FO heuristic, supplemented by an additional improvement step 

applied to the existing problem settings is presented. The findings have been 

systematically categorized and scrutinized across three key dimensions: percentage 

deviations from the best bounds provided by CPLEX, computational time 

requirements, and fleet composition. In the realm of comparative analysis, it becomes 
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evident that FO-II outperforms the other two versions, boasting an average gap of 

merely 0.56%, the lowest among all. 

To further evaluate the heuristic's performance, random instances were generated for 

each problem setting, resulting in a comprehensive analysis based on 40 instances for 

FO-II. The results consistently demonstrate percentage deviations under 2%, a 

testament to the efficiency of the suggested method in delivering high-quality 

solutions. 

In terms of computational time, FO-II outperforms the other two versions. All of the 

three versions solve the instances in a time less than 2 hours which indicates that they 

beat the CPLEX from this aspect, as well. 

In summary, the proposed FO heuristic variations, complemented by the additional 

improvement step, have demonstrated their efficiency as solution techniques for the 

addressed problem case. These findings underscore the potential for optimizing 

delivery patterns, enhancing fleet sizing, and the importance of decision support 

mechanisms across all subsystems in the retail industry. 
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4 CONTRIBUTION TO THE LITERATURE AND FUTURE RESEARCH 

In this thesis, we consider an important logistical problem. A basic and extended 

version of the mixed integer programming model is developed. The basic model aims 

at making decisions about fleet size and replenishment schedules simultaneously while 

tries to minimize the total annual cost of replenishing a set of geographically dispersed 

customers using a single customer specific delivery frequency and vehicle type. In this 

problem, all of the inventory related, routing related and fleet ownership related costs 

are included. A significant simplification brought to the problem of consideration is 

that the routing costs are handled in an approximate manner. Complexity of the 

problem is analyzed and it is proved to be an NP- hard one according to its reduction 

to one dimensional bin-packing problem. To solve the problem and bring quality 

solutions two effective metaheuristic techniques are proposed, namely: ADP with an 

improvement step and PSS. The effectiveness of the suggested methods is proved by 

testing them on a set of semi real-life dataset. 

The second section of the thesis, handles an extended version of the same problem, 

where the delivery patterns are in a more generalized form, demand is exposed to 

seasonality and rental fleet option is available. The decisions to be made here are:  

1. assignment of stores to delivery patterns, delivery tours and vehicles 

2. assignment of vehicles to delivery tours and delivery days 

The chief objective of the problem in chapter II is to minimize the total amount of the 

costs incurred by delivery pattern assignment, routing, vehicle ownership, using rental 

vehicles and holding inventories. Routing costs are calculated based on an 

approximation technique put forward by Fisher & Jaikumar (1981) [19]. The problem 

is proved to be NP-hard and three versions of fix and optimize heuristic with an 

additional improvement step are suggested. The results from FO implementation show 

the efficiency of the proposed method both in terms of computational time and solution 

quality. To sum up, we contribute to the literature by developing two mathematical 

formulations and effective solution techniques for a key logistical problem.As future 

work the following one can:
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1. Propose different novel heuristics for the basic model 

2. Develop the mathematical formulation for the case with stochastic demand and 

propose efficient solution techniques 

Develop a two-echelon system considering the policies of the distribution center and 

generate efficient solution heuristics 
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