

TOBB UNIVERSITY OF ECONOMICS AND TECHNOLOGY

GRADUATE SCHOOL OF ENGINEERING AND SCIENCE

GRADUATE SCHOOL OF ENGINEERING AND SCIENCE

PHD THESIS

Duygu AGHAZADEH

OPTIMIZATION MODELS AND HEURISTIC SOLUTION METHODS FOR

THE INTEGRATED FLEET SIZING AND REPLENISHMENT PLANNING

PROBLEM WITH CANDIDATE DELIVERY PATTERNS

Industrial Engineering Department

Anabilim Dalı : Herhangi Mühendislik, Bilim

Programı : Herhangi Program

Supervisor: Assoc. Prof. Dr. Kadir ERTOGRAL

SEPTEMBER 2023

iii

THESIS STATEMENT

I hereby declare that all information in this document has been obtained and presented in

accordance with academic rules and conduct, I have fully cited and referenced all material

and results that are not original to this work.

.

Duygu AGHAZADEH

 SIGNATURE

v

ÖZET

Doktora Tezi

"ADAY TESLİMAT PATERNLERİ İLE ENTEGRASYONLU FİLO

BÜYÜKLÜĞÜ VE İKMAL PLANLAMA PROBLEMİ İÇİN OPTİMİZASYON

MODELLER VE SEZGİSEL ÇÖZÜM YÖNTEMLERİ"

Duygu AGHAZADEH

TOBB Ekonomi ve Teknoloji Üniveritesi

Fen Bilimleri Enstitüsü

Endüstri Mühendisliği Anabilim Dalı

Doç. Dr. Kadir ERTOĞRAL

Tarih: Eylül 2023

Bu tez çalışmasında entegre filo büyüklüğü belirleme ve ikmal planlaması problemi

için matematiksel modeller üretilip, farklı çözüm yöntemleri önerilmiştir. Tezin ilk

bölümünde, önceden belirlenmiş ikmal frekansları ve satıcı yönetimi politikası altında

ikmal planlaması ve filo büyüklüğünün belirlenmesi amacıyla bir model

oluşturulmuştur. Bahsedilen modelin çözümü için iki farklı meta sezgisel çözüm

tekniği, Yaklaşık Dinamik Programlama ve Problem Alanı Arama, önerilip, gerçek

hayat verilerinden esinlenerek üretilen veri setleri üzerine test edilmiştir. İkinci

bölümde ise, ilk bölümdeki modelin daha genelleştirilmiş hali ele alınarak yeni bir

bakış açısıyla matematiksel bir model geliştirilip, sezgisel çözüm yöntemleri

önerilmiştir. Bu bölümde önceden belirlenmiş tekrarlanan ikmal frekansları yerine

ikmal paternleri ele alınmıştır. Ek olarak, talep sezonsallığı ve araç kiralama

opsiyonları göz önünde bulundurulmuştur. Problemi çözmek için Sabitle ve optimize

et sezgiselinin üç farklı versyonu tasarlanıp, üretilen veriler üzerine test edilmiştir.

Sonuçların kalitesi ve çözüm süreleri önerilen çözüm tekniklerinin etkili olduğunu

göstermiştir.

vi

Anahtar Kelimeler: İkmal planlama, Filo büyüklüğü belirleme, Sezgisel metot, Meta

sezgisel metot

vii

ABSTRACT

Doctor of Philosophy

OPTIMIZATION MODELS AND HEURISTIC SOLUTION METHODS FOR THE

INTEGRATED FLEET SIZING AND REPLENISHMENT PLANNING

PROBLEM WITH CANDIDATE DELIVERY PATTERNS

Duygu AGHAZADEH

TOBB University of Economics and Technology

Institute of Natural and Applied Sciences

Industrial Engineering Science Programme

Supervisor: Assoc. Prof. Dr. Kadir ERTOGRAL

Date: September 2023

In this thesis work, two mathematical models were developed to formulate two basic

and extended versions the integrated fleet sizing and replenishment planning problem,

and various solution methods were proposed. In the first section of the thesis, a model

was created for replenishment planning and fleet size determination under pre-defined

replenishment frequencies and vendor management policy. For solving the mentioned

model, two different metaheuristic solution techniques, namely Approximate Dynamic

Programming, and Problem Space Search, were proposed and tested on datasets

inspired by real-life data. In the second section, a more generalized version of the

model in the first section is considered, and a mathematical model is developed from

a new perspective, with intuitive solution methods proposed. Replenishment patterns

were considered instead of pre-defined recurring replenishment frequencies.

Additionally, demand seasonality and vehicle renting options were taken into account.

To solve the problem, three different versions of the Fix and Optimize heuristic were

viii

 designed and tested on generated data. The quality of the results and solution times

demonstrated the effectiveness of the proposed solution techniques.

Keywords: Replenishment planning, Fleet sizing, Heuristic methods, Meta-heuristic

methods

ix

ACKNOWLEDGMENTS

To begin, my profound gratitude goes to my supervisor, Assoc. Prof. Dr. Kadir

ERTOGRAL, for his invaluable mentorship, direction, constructive feedback, and,

most notably, his unwavering support, which extended beyond the scope of this study

to encompass my entire graduate journey. My appreciation extends to the examining

committee members, including Prof. Dr. Fulya ALTIPARMAK, Assoc. Prof. Dr.

Aysegul ALTIN KAYHAN, Asst. Prof. Dr. Salih TEKIN, and Prof. Dr. Diyar AKAY,

for their invaluable insights and substantial contributions.

I want to express my gratitude to my wonderful family for their enduring support,

affection, and motivation throughout my lifetime.

I extend my heartfelt appreciation to my husband, Reza AGHAZADEH, whose

unwavering understanding and support were instrumental in helping me navigate

through this challenging phase of my life.

I wish to express my sincere appreciation to my daughter, Ela AGHAZADEH, for her

consistent motivation and exceptional understanding throughout my doctoral studies.

xiv

CONTENTS

Pages

ÖZET ... v

ABSTRACT .. vii
CONTENTS ... xiv
TABLE OF FIGURES .. xvi
TABLE OF TABLES .. xvi
1 INTRODUCTION .. 1

2 BASIC PROBLEM WITH SIMPLE DELIVERY PATTERNS 3
2.1 Introduction .. 3

2.1.1 Motivation .. 5
2.2 Literature .. 6

2.2.1 Fleet sizing problem ... 6
2.2.2 Delivery with given frequencies .. 7

2.2.3 Approximate dynamic programming ... 8

2.2.4 Problem space search metaheuristic .. 9

2.2.5 Fix and optimize heuristic .. 9
2.3 Problem Definition ... 10
2.4 Approximate Dynamic Programming Heuristic .. 15

2.4.1 Suggested approximate dynamic programming 15
2.4.1.1 Formulation of the recursive equation ... 15

2.4.2 Fix and optimize heuristic .. 17
2.4.3 Look ahead strategy for ADP ... 19
2.4.4 Improvement algorithm for ADP ... 20
2.4.5 Pseudo codes of the ADP and improvement algorithm 22

2.5 Problem Space Search Metaheuristics ... 24

2.5.1 PSSI description and steps ... 25

2.5.2 PSSII description and steps .. 27
2.6 Computational Results ... 28

2.6.1 Dataset .. 28
2.6.2 ADP results with improvement step .. 30
2.6.3 PSS Results .. 37

2.6.3.1 Percentage gaps from optimal/best bounds 38
2.6.3.2 Fleet composition ... 42
2.6.3.3 Computational time. ... 44

2.7 CONCLUSION .. 44
3 EXTENDED PROBLEM WITH GENERALISED DELIVERY

PATTERNS .. 47

3.1 Introduction .. 47

3.1.1 Motivation and related literature .. 49
3.2 Problem Description And Mathematical Formulation 51

xv

3.3 Complexity Analysis Of The Problem ... 56

3.4 Solution Techniques ... 56
3.4.1 Store based subproblems .. 58
3.4.2 Delivery day based subproblems .. 58
3.4.3 Cluster based subproblems ... 59

3.5 Improvement Algorithm ... 59

3.5.1 Improvement algorithm phase I ... 60
3.5.2 Improvement algorithm phase II .. 60

3.6 Numerical Analysis .. 61

3.6.1 Seed point generation ... 62
3.6.2 Transportation and routing cost calculation ... 65
3.6.3 Dataset generation .. 66

3.7 Numerical Results .. 69

3.7.1 CPLEX results .. 69
3.7.2 Results for FO .. 70

3.8 Conclusion .. 74
4 CONTRIBUTION TO THE LITERATURE AND FUTURE RESEARCH

 77
REFERENCES ... 79

xvi

TABLE OF FIGURES

 Pages

Figure 2.1:The problem solved at iteration 𝑖 in Phase I. .. 18

Figure 2.2: The problem solved at iteration 𝑖 in Phase II. .. 19

Figure 2.3: Flowchart for PSSI. ... 27

Figure 2.4: Flowchart for PSSII. ... 28

Figure 2.5: Cost element percentages for scenario 1. .. 34

Figure 2.6: Cost element percentages for scenario 2. .. 34

Figure 2.7: Cost element percentages for scenario 3. .. 35

Figure 2.8: Cost element percentages for scenario 4. .. 35

Figure 2.9: Frequency repetition for scenario 1. .. 36

Figure 2.10: Frequency repetition for scenario 2. .. 36

Figure 2.11: Frequency repetition for scenario 3. .. 37

Figure 2.12: Frequency repetition for scenario 4. .. 37

Figure 3.1: Steps for improvement algorithm. ... 61

Figure 3.2: Example of calculating cost parameters 𝑐𝑘𝑣𝑡𝑟𝑎𝑛𝑠𝑡𝑜𝑢𝑟 and

𝑐𝑓𝑘𝑣𝑡𝑟𝑎𝑛𝑠𝑠𝑡𝑜𝑝. ... 66

Figure 3.3: operational logistical costs in the retail supply chain for non-perishable

goods. ... 68

xvi

TABLE OF TABLES

Pages

Table 2.1: Frequency labels. .. 11

Table 2.2: Problem characteristics. .. 29

Table 2.3: Percentage deviations from best bounds /optimal for improved ADP. 32

Table 2.4: Scenario based Fleet utilization average for improved ADP. 33

Table 2.5: CPU times (in seconds) for improved ADP. ... 33

Table 2.6: Deviations from objective function value for FO and PSSI (β1) 39

Table 2.7: Deviations from objective function value for FO and PSSI (β2). 40

Table 2.8: Deviations from objective function value for FO and PSSII. 41

Table 2.9: Average, Min and Max gaps from optimal/best bound for FO, PSSI and

PSSII. ... 42

Table 2.10: Average vehicle numbers from FO and PSSI variations. 43

Table 2.11: Average vehicle numbers from FO and PSSII. 43

Table 2.12: Average total vehicle usage for FO, PSSI and PSSII. 43

Table 2.13: Average solution durations in seconds for FO, PSSI and PSSII............. 44

Table 3.1: Notations used in cluster generation model. ... 63

Table 3.2: Scenario IDs. ... 67

Table 3.3: Part of days for delivery pattern of size 𝑅 = 46. 67

Table 3.4:Operational costs of stores. .. 69

Table 3.5: CPLEX results. ... 70

Table 3.6: Percentage deviations from best bounds for FO-I, FO-II and FO-III. 72

Table 3.7: Average gaps and CPU (s) times for FO-II. ... 73

Table 3.8: CPU times in seconds for FO-I, FO-II and FO-III. 73

Table 3.9: Fleet composition for CPLEX, FO-I, FO-II and FO-III. 73

1

1 INTRODUCTION

This thesis addresses two notable challenges within the realm of fleet sizing and

replenishment planning. The first and second sections suggest simple and extended

versions of the problem with mathematical models and metaheuristic solution

techniques for the solution of integrated fleet sizing and replenishment problem when

a set of predetermined delivery frequencies is available. Within this context, our focus

lies on the VMI framework, wherein the distributor or supplier has the freedom to

decide delivery timing and quantities. The implementation of a VMI program is a

common practice and it offers numerous advantages for all participants in the supply

chain.

Logistics costs are significantly affected by three main factors: the ownership cost of

the fleet, the routing cost of vehicles, and inventory related costs. Fleet ownership cost

is contingent upon fleet size and composition which are strategic decisions. On the

other hand, routing costs are the outcome of daily routing plans based on assignments

of vehicles to customers. Hence, the composition of the fleet plays a pivotal role in

optimizing logistics costs. Thus, finding optimal or highly efficient solutions for the

strategic problems of fleet sizing and composition becomes a critical decision in the

realm of logistics. This strategic problem must consider routing and inventory

replenishments in an aggregate manner, which are operational problems. This

framework is what we considered in the models suggested in this thesis.

 In Dastjerd & Ertogral (2019) [14] we stated that optimizing a distribution system is

dependent on optimizing its cost components as a whole. Hence, the objective function

for the suggested problem includes fixed replenishment, inventory holding, routing,

and vehicle ownership costs. We aim at determining the fleet size and composition

along with assigning customers to a specific vehicle-frequency, or vehicle-delivery

pattern, combination. In the first section, we tackle the same problem as the one in

Dastjerd & Ertogral (2019) [14], and we both suggest a mathematical model and the

following two different heuristic solution methods;

1. Approximate Dynamic Programming (ADP) with fix and optimize heuristic

2

2. Problem Space Search (PSS) with fix and optimize heuristic

In the second part of the thesis, we tackle a more extensive variation of the issues

discussed in the first section. Initially, we constructed a mixed integer programming

model to manage challenges encompassing the integration of fleet sizing and

replenishment planning, all while taking into account predetermined delivery

frequencies. The assumptions were made that demands from customers dispersed

geographically were constant and not influenced by seasons. Also assumed is that the

candidate delivery patterns are regular and repetitive. The replenishment procedures

were executed utilizing a diverse array of owned vehicles, with the cost of routing

determined by the number of customers replenished via specific vehicle types, delivery

frequencies, and the per-kilometer cost of each assigned vehicle type.

Transitioning to the issue explored in the thesis's subsequent section, it centers around

an assemblage of stores spread across a clearly define ed geographic region. In this

context, the demand for these stores is consistent but demonstrates seasonal patterns.

The fleet employed consists of both owned and rented heterogeneous trucks. The

approximation of routing costs is accomplished through clustering, a technique that

involves allocating stores to seed points. The replenishment processes are executed

utilizing appropriate delivery patterns designed not only to fulfill store demands but

also to minimize the comprehensive expenses associated with transportation, delivery

pattern allocation (inventory costs), vehicle ownership/rental, and routing.

 As solution method, three versions of fix and optimize heuristic are suggested:

1. FO with store-based subproblems

2. FO with cluster-based subproblems

3. FO with delivery day-based subproblems

As it is obvious from the name of the FO versions, they differ in the subproblem

generation criteria.

We give motivation, related literature, problem definition, steps for solution

techniques, and numerical analysis for each section in the subsequent parts of the

thesis.

3

2 BASIC PROBLEM WITH SIMPLE DELIVERY PATTERNS

2.1 Introduction

Optimizing the supply chain is of utmost importance as it leads to cost reduction for

both businesses and customers, fostering win-win situations. In today's ever-changing

and uncertain business landscape, companies require robust systems that can adapt

dynamically. As part of effective supply chain management practices, companies also

prioritize reducing logistics-related costs. Therefore, the design of the distribution

system must ensure that logistics operations costs are minimized while maintaining an

acceptable service level.

According to Taleizadeh et al. (2020) [52], it is essential to acknowledge that the best

course of action for one side, either the supplier or the consumer, may not always align

with the other. Consequently, a systematic approach is needed to address this issue.

Vendor Managed Inventory (VMI) is one such systematized approach that offers

benefits to both suppliers and customers in the supply chain. The concept of VMI

emerged from a study by John (1958) [29], which debated who should be responsible

for maintaining inventory. VMI is a well-known system where the supplier determines

the timing and quantity of deliveries, while ensuring that the customer's inventory

remains within specified minimum and maximum limits. This provides suppliers with

better demand information and enhances operational efficiency in distribution while

significantly reducing inventory control costs for customers.

In the problems and models, we tackle in the thesis, we focus on the VMI setting,

where the distributor or supplier has the freedom to choose the timing and quantity of

deliveries. Implementing a VMI program yields numerous advantages for the supply

chain and all its participants.

Two significant components of logistics costs are the fleet ownership cost and routing

cost of vehicles. Fleet ownership cost depends on the fleet size and composition,

making it a strategic decision. On the other hand, routing costs result from daily routing

plans based on customer-vehicle assignments. Therefore, an effective fleet

4

 composition greatly influences the optimization process to minimize logistics cost

significantly. Hence, arriving at optimal or near-optimal solutions for the strategic fleet

sizing and composition problem becomes a crucial logistical decision.

Strategic fleet sizing primarily focuses on choosing the appropriate fleet composition

and size to increase the firm's profitability. According to Koç et al. (2016) [30], fleet

sizing decisions take various factors into account, including the types and quantity of

vehicles to be owned, which are influenced by market considerations such as shipping

costs, rates, and expected demand.

This section of the thesis introduces two different solution algorithms for the integrated

fleet sizing and replenishment planning problem, namely approximate dynamic

programming (ADP) and Problem Space Search (PSS) metaheuristic. ADP algorithm

employs a Fix and Optimize (FO) method to approximate the objective function value

at each iteration of the dynamic programming for the partial problem. We adopt the

model suggested in Dastjerd & Ertogral (2019) [14] where the authors proposed a fix

and optimize heuristic for the same problem. However, in this thesis, we present an

enhanced solution approach, framing them as an ADP and a problem space search

heuristic.

The method employed in this research involves a fix and optimize-based approximate

dynamic programming approach, supplemented by a final improvement step. ADP is

a well-established technique used in various problems, as discussed in detail in the

literature. One of the key advantages of ADP is its ability to significantly reduce

computational time by solving partial problems in a forward recursion formulation

using problem-specific or general heuristics instead of seeking optimal solutions. In

our approach, we use fix and optimize as the heuristic for the partial problems in the

ADP, and we further enhance efficiency with a look-ahead strategy. Additionally, an

improvement stage is executed at the end of the process.

The other proposed solution method, called Problem Space Search (PSS), introduces

a novel metaheuristic technique that differs from the conventional approach of

exploring the "solution space." Instead of solely searching for solutions within a

designated solution space, PSS adopts a problem space search approach. In each

iteration of a problem-specific heuristic, multiple solutions are evaluated by executing

specific algorithms multiple times. Each execution uses temporarily perturbed data or

5

perturbed heuristic parameters as input. This novel strategy aims to create a distinct

search space within the problem space, leading to more efficient and effective

solutions.

The core concept behind PSS is to create artificial "neighbor" problems by temporarily

modifying the input data of the original problem or adjusting parameters in the

embedded heuristic. The main idea is that by finding heuristic solutions to similar

problems, there is a higher chance of obtaining solutions that are close to the optimal

solution for the original problem. PSS aims to broaden the exploration scope by

considering variations of the original problem through data perturbation, leading to the

discovery of potentially high-quality solutions within a wider problem space. Our

version of PSS incorporates a fixed and optimize heuristic. In PSSI, we perturb the

cost data, while in PSSII, we randomize the order of subproblems tackled in the fix

and optimize process. We generate multiple instances with distinct characteristics and

evaluate the performance of the proposed metaheuristic through a numerical study

using the generated dataset.

The structure of this part is as follows: the subsequent section reviews the relevant

literature, while Section 2.3 provides an explanation of the mathematical model and

the problem. The steps for the Approximate Dynamic Programming and Problem

Space Search methods are outlined in Sections 2.4 and 2.5. Section 2.6 delves into the

dataset's structure and presents the performance analysis of the heuristic. Finally, in

Section 2.7, we offer our concluding remarks on this section.

2.1.1 Motivation

As discussed in introduction section, inventory and transportation costs play a key role

in minimizing the total cost of a distribution system. On the other hand, having an

efficient distribution system in terms of costs and performance, needs caring for all of

the components of the system as a whole. Hence, this part of the thesis focuses on a

problem which integrates fleet sizing and inventory decisions in a single problem and

aims at bringing quality solution to this novel problem.

6

2.2 Literature

In this section, we present several pertinent research works. We provide an overview

of the literature, which can be categorized into five main focus groups: fleet sizing,

delivery problems with specified frequencies, studies related to approximate dynamic

programming, Problem Space Search and applications of the fix and optimize method.

2.2.1 Fleet sizing problem

In this section, we discuss various studies directly related to fleet sizing. Desrochers

& Verhoog (1991) [15] address the challenge of replenishing customers with known

demands from a central depot. They tackle both fleet composition and routing

decisions, utilizing a version of the saving type heuristic based on consecutive route

fusions. Sayarshad & Ghoseiri (2009) [42] explore a novel mathematical formulation

for fleet dimension optimization and freight car assignment. Their proposed solution

approach relies on simulated annealing, which employs three techniques to escape

local optima: inferior solutions, solution space neighborhood search, and acceptance

probability.

Liu et al. (2009) [34] focus on the fleet sizing and vehicle routing problem involving

a set of nonhomogeneous vehicles. They present a heuristic based on a genetic

algorithm, demonstrating its effectiveness on benchmark instances compared to

existing literature solutions in terms of solution quality and computation times. Żak et

al. (2011) [57] tackle the fleet sizing problem in a road freight transportation firm with

a set of heterogeneous vehicles. Their two-phased heuristic employs innovative

software to produce a collection of Pareto-optimal results, which the decision maker

then evaluates using their preference model.

Aziez et al. (2022) [4] propose methods to enhance transportation operations'

efficiency in hospitals by utilizing automated guided vehicles to save labor and

improve efficiency. They develop a mathematical formulation and a powerful

metaheuristic for this purpose. Sun et al. (2021) [51] address an operational fleet

dimensioning problem that considers the cost of fuel. Their problem is a modified

version of fleet dimensioning and mix vehicle routing, and they introduce the economy

traveling distance (ETD) method to determine the optimal travel distances for each

type of vehicle, taking into account their fuel consumption rates.

7

2.2.2 Delivery with given frequencies

Speranza & Ukovich (1994) [47] explore the distribution problem involving candidate

frequencies, accommodating both indivisible and divisible demand scenarios through

their integer and mixed integer formulations. They propose a two-step heuristic using

modified dominance principles as the solution strategy. In a separate work, Speranza

& Ukovich (1996) [46] utilize a branch and bound approach to tackle the distribution

of various commodities from a single origin to multiple consumers based on preset

replenishment schedules.

Bertazzi et al. (1997) [8] present a strategy for resolving a problem with predefined

frequencies, where items are delivered from a single origin to multiple destinations,

considering transportation and inventory costs, similar to our study. However, they use

continuous frequencies in their replenishment decision-making approach,

distinguishing it from our case. Additionally, they do not account for fixed costs per

delivery. Their sequential heuristic method involves building a mixed integer

programming model for single link problems and solving a shortest path problem to

make decisions on frequency-truck assignment and cargo transportation percentage.

In another study, Bertazzi & Speranza (1999) [7] analyze a different situation

involving several products, one origin, a few intermediary nodes, and a destination,

with predetermined candidate delivery frequencies. They propose four distinct

heuristic techniques, including dividing sequences into links and handling each link

independently, applying the same shipping percentages to all links, and two heuristics

based on discrete versions of the EOQ formulations. They also explore a dynamic

programming-based technique, considering links as stages and the collection of

delivery frequencies on preceding links as states.

Examining the problem of transporting multiple items from an origin to a single

destination at a predefined frequency, Bertazzi et al. (2000) [9] employ both heuristic

and exact methods. The heuristic methods are developed based on the EOQ formula,

while the exact method involves a modified version of the branch and bound algorithm.

In a more complex production-distribution network under a Vendor Managed

Inventory (VMI) setting, Bertazzi et al. (2005) [6] aim to regularly produce and

distribute products using a fleet of trucks. They propose hierarchic heuristics, solving

8

the production and distribution subproblems consecutively, with the production results

influencing the distribution phase.

2.2.3 Approximate dynamic programming

Approximate Dynamic Programming (ADP) is introduced as an algorithmic technique

to address the issue of the curse of dimensionality, commonly used in stochastic

problems. ADP employs a heuristic approach to approximate the objective function

value. The literature covers various problems effectively solved by ADP, including

scheduling problems, fleet management problems, knapsack problem variations,

vehicle routing problems, replenishment planning problems, and allocation problems.

Bertsimas & Demir (2002) [10] propose an ADP approach for the multidimensional

knapsack problem, estimating the objective function value using non-parametric and

parametric techniques. They claim that their heuristic approach provides high-quality

solutions, outperforming ready-to-use software like CPLEX in terms of solution

quality and computational time. Hua et al. (2006) [25] consider the convex Quadratic

Knapsack Problem (QKP) and offer two approaches to estimate the objective function

value, achieving high-quality solutions for large-scale QKPs. Perry & Hartman (2009)

[37] use ADP to solve a dynamic, stochastic knapsack problem, combining simulation

with deterministic dynamic programming to solve longer-term problems effectively.

Topaloglu (2005) [54] employs an ADP-based technique to optimize distribution

activities for a business, involving production across multiple facilities and distribution

to various locations. They utilize concave approximations to estimate the objective

function value, demonstrating the effectiveness of their ADP version. Simao et al.

(2009) [45] create a model for a large truckload motor carrier company in the US,

using Monte Carlo simulation and machine learning to approximate the value function

and accurately assess the marginal value of different types of drivers.

ADP is also applied in other areas, such as the surgical scheduling problem, patient

admission problem, and machine scheduling problem (Astaraky & Patrick (2015) [3],

Silva & de Souza (2020) [44], Hulshof et al. (2016) [27], and Ronconi & Powell (2010)

[39], respectively).

9

2.2.4 Problem space search metaheuristic

Storer et al. (1992) [50] introduced the Problem Space Search (PSS) metaheuristic,

which involves applying a problem-specific heuristic repeatedly in the problem space

using local search. PSS has been widely adopted in various studies. For example,

Naphade et al. (1997) [35] solved the resource-constrained scheduling problem using

PSS, achieving results comparable to the branch and bound technique. Leon &

Ramamoorthy (1997) [33]applied PSS to the flexible flow line scheduling problem

and demonstrated its effectiveness in this domain. Albrecht et al. (2013) [2] utilized

PSS to address the rail network rescheduling problem, generating numerous different

train timetables. Storer et al. (1996) [49] used PSS for the number partitioning

problem, noting that while it may require longer solution durations, the quality of

solutions improves. PSS can be combined with various heuristics, such as the Lagrange

relaxation based heuristic used by Jeet & Kutanoglu (2007) [28] to solve the

generalized assignment problem. Despite the wide applications of PSS in various

problem domains, there hasn't been any prior study suggesting the use of PSS

metaheuristic for the fleet sizing problem and employing the fix and optimize (FO)

technique as the problem-specific heuristic. This research introduces an innovative

approach to address the integrated replenishment planning and fleet sizing problem

with predetermined replenishment frequencies, considering vehicle ownership,

inventory, and routing costs. We apply the FO heuristic in two versions of PSS to solve

the problem presented in Dastjerd & Ertogral (2019) [14]. Our main objective is to

build upon and advance the existing solutions proposed in their previous research. By

incorporating the PSS metaheuristic with FO, we aim to enhance the effectiveness,

efficiency, and overall quality of the solutions, refine existing methodologies, and

potentially introduce novel approaches to achieve more robust and improved solutions

in the field of fleet sizing and replenishment planning.

2.2.5 Fix and optimize heuristic

Pochet & Wolsey (2006) [38] introduced the multi-level capacitated lot size problem

and developed the "exchange heuristic," which may have been the origin of the Fix

and Optimize (FO) method. When existing solvers proved inadequate in delivering

high-quality or optimal solutions within reasonable computing timeframes, researchers

10

turned to mixed integer programming-based heuristics (Tanksale & Jha (2020) [53]).

FO emerged as an effective solution method, producing excellent solutions within

reasonable timeframes, and has been applied to various lot-sizing problem variations,

such as capacitated lot sizing with setup carryover (Gören & Tunalı (2015) [22], Chen

(2015) [13]), cooperative lot-sizing (Drechsel & Kimms (2011) [17]), and stochastic

capacitated lot sizing (Helber & Sahling (2010) [23]).

The versatility of the FO method extends to other problem types as well. Gintner et al.

(2005) [21] used FO to solve a bus scheduling problem, while Dorneles et al. (2014)

[16] applied a combination of FO and variable neighborhood search to address high

school timetabling. Federgruen et al. (2007) [18] utilized FO for solving a multi-

product capacitated lot size challenge. Helber & Sahling (2010) [23] employed the FO

method for the multi-level capacitated lot sizing problem, and Neves-Moreira et al.

(2018) [36] used it for assigning time intervals and creating delivery schedules,

asserting its superiority over commercial solvers.

As of our knowledge, no previous work has suggested an ADP-based solution for the

fleet sizing problem proposed by Dastjerd & Ertogral (2019) [14]. In this study, we

present a novel solution strategy based on ADP for their problem. Our approach

involves an enhanced version of classical ADP, incorporating the FO method to

estimate the objective function value.

2.3 Problem Definition

In this section, we outline our problem and present its mathematical formulation. The

problem involves a group of geographically dispersed customers who make

deterministic product restocking requests. The main objective is to minimize the total

annual expenses, which encompass vehicle ownership, routing costs, fixed

replenishment costs, and inventory holding costs.

The solution to the problem involves determining the appropriate fleet size and

composition of vehicles, as well as the optimal replenishment size and schedule for

each customer. The fleet consists of a set of heterogeneous vehicles with different cost

parameters and carrying capacities. Replenishments are conducted based on a

predefined set of candidate frequencies, which are determined by the number of weeks

between deliveries and the specific delivery day of the week. Customers' inventories

11

can be restocked on a weekly, biweekly, thrice-weekly, or quarto-weekly basis, on any

of the five weekdays. This results in 20 weekly base frequencies (5 weekdays × 4

possible delivery intervals). Additionally, we consider a daily frequency, resulting in

a total of 21 distinct possible frequencies, which are listed in Table 2.1 along with their

respective labels.

Table 2.1: Frequency labels.

Label Frequency

1 Daily

2-6 Weekly

7-11 Biweekly

12-16 Thrice-weekly

17-21 Quarto-weekly

Some of the frequencies frequently overlap, therefore it is important to record them

for avoiding both double counting of deadheading costs and accurately depicting

capacity limits on coinciding days. For example, considering frequencies that cover

Thursdays, labels of the coinciding frequencies are 5, 10, 15, and 20, plus the daily

frequency.

We assume the following operational challenges as they pertain to our problem:

1. Each customer's inventory must be restocked using a single truck based on a

single delivery frequency,

2. Only a certain maximum number of customers may be visited on a given day,

and,

3. We took into account the customer's location when allocating consumers to a

route. That is if the problem has clustered customer structure, two customers

on different clusters cannot be delivered with the same frequency and vehicle.

One of the distinctive features of the mathematical model is that it adopts an

approximation method in determining the routing costs. The routing cost is estimated

by the product of the average cost of travelling from one consumer to another and the

12

number of consumers visited on a specific route. Since the main focus of the problem

is fleet sizing and routing cost is an operational cost that may vary on a daily basis,

taking routing cost as an approximate value was appropriate. Besides, this

simplification saves significant computational time in terms of solution durations and

makes it possible to build the problem without the need for exact routing data.

We provide an overview of the mixed integer programming model for the problem

below. The notations used are shown below:

Sets:

𝐼: Customer set

𝑉: Vehicle set

𝐹: Frequencies set, 𝐹= {1, 2, ..., 21}

𝐹𝑗: Coinciding frequencies set, ∀𝑗 = 1, … , 𝑛

𝐷: Set of days of the week, 𝐷 = {1, 2, …, 5}

𝐻: Set of weeks per year, 𝐻 = {1, 2, …, 52}

Parameters:

𝑁: Number of coinciding frequency sets

𝑚: Number of customers

𝑟𝑣: Approximate routing cost between two customers for vehicle 𝑣

gv: Dead heading cost for vehicle 𝑣

𝑎𝑣 : Annual ownership cost of vehicle 𝑣

𝜆𝑖𝑓: Demand of customer 𝑖 at frequency 𝑓

ℎ: Annual inventory holding cost per unit of a product

𝑘𝑖𝑓: Fixed cost of replenishing customer i using frequency f

𝑠𝑚𝑎𝑥: Maximum number of customers that can be visited during the day

13

𝑐𝑣: Capacity of vehicle 𝑣

M: A big number

𝑝𝑓: Total number of annual replenishments for frequency f

𝑡𝑖𝑘: Incidence matrix of customers 𝑖 and 𝑘 (customers 𝑖 and 𝑘 can be in the same route

if 𝑡𝑖𝑘=2, and cannot be in the same route when 𝑡𝑖𝑘=1)

Decision variables:

𝑥𝑖𝑣𝑓: 1 if customer 𝑖 is replenished by vehicle 𝑣 and frequency 𝑓, 0 otherwise.

𝑉𝑣: 1 if vehicle 𝑣 is used, 0 otherwise.

𝐿𝑣𝑓: 1 if any customer is assigned to vehicle 𝑣 and frequency 𝑓, 0 otherwise.

𝑅𝑑𝑣ℎ: 1 if any customer assigned is to vehicle 𝑣 and frequency 𝑓 on the day 𝑑 in

week ℎ, 0 otherwise

𝐶𝑣𝑓: Number of customers assigned to vehicle 𝑣 and frequency 𝑓.

Mathematical model

Min. ∑ 𝑔𝑣𝑝1𝐿𝑣1 +𝑣∈𝑉 ∑ ∑ ∑ 𝑔𝑅𝑑𝑣ℎ𝑣∈𝑉ℎ∈𝐻𝑑∈𝐷 +∑ ∑ 𝑟𝑣𝑓∈𝐹𝑣∈𝑉 . 𝑝𝑓 . 𝐶𝑣𝑓 +

∑ 𝑎𝑣𝑉𝑣 +𝑣∈𝑉 ∑ ∑ ∑ ℎ 𝑋𝑖𝑣𝑓

𝜆𝑖𝑓

2𝑓∈𝐹𝑣∈𝑉𝑖∈𝐼 + ∑ ∑ ∑ 𝑘𝑖𝑓𝑋𝑖𝑣𝑓𝑓∈𝐹𝑣∈𝑉𝑖∈𝐼

Subject to

(2.1)

∑ ∑ 𝑋𝑖𝑣𝑓𝑓∈𝐹𝑣∈𝑉 =1 ∀ 𝑖 ∈ 𝐼 (2.2)

∑ 𝑋𝑖𝑣𝑓𝑖∈𝐼 = 𝐶𝑣𝑓 ∀ 𝑣 ∈ 𝑉, ∀𝑓 ∈ 𝐹 (2.3)

𝑀𝐿𝑣𝑓 ≥ 𝐶𝑣𝑓 ∀𝑣 ∈ 𝑉, 𝑓 ∈ 𝐹 (2.4)

𝐿𝑣𝑓 ≤ 𝐶𝑣𝑓 ∀𝑣 ∈ 𝑉, 𝑓 ∈ 𝐹 (2.5)

𝑀 𝑉𝑣 ≥ ∑ ∑ 𝑋𝑖𝑣𝑓𝑓∈𝐹𝑖∈𝐼 ∀ 𝑣 ∈ 𝑉 (2.6)

14

∑ 𝜆𝑖𝑓𝑋𝑖𝑣𝑓𝑖∈𝐼 ≤ 𝑐𝑣 ∀𝑣 ∈ 𝑉, ∀𝑓 ∈ 𝐹 (2.7)

∑ ∑ 𝜆𝑖𝑓𝑋𝑖𝑣𝑓𝑓∈𝐹𝑗𝑖∈𝐼 ≤ 𝑐𝑣 ∀ 𝑣 ∈ 𝑉, ∀𝑗 = 1, … , 𝑛 (2.8)

∑ 𝐶𝑣𝑓 𝑓∈𝐹𝑗
≤ 𝑠𝑚𝑎𝑥 ∀ 𝑣 ∈ 𝑉, ∀𝑗 = 1, … , 𝑛 (2.9)

∑ 𝑋𝑖𝑣𝑓𝑓∈𝐹𝑗
+∑ 𝑋𝑘𝑣𝑓𝑓∈𝐹𝑗

≤ 𝑡𝑖𝑘 ∀𝑣 ∈ 𝑉, 𝑖 ∈ 𝐼, 𝑘 ∈ 𝐼, ∀𝑗 = 1, … , 𝑛 (2.10)

𝑅𝑑𝑣ℎ ≥ 𝐿𝑣𝑓-𝐿𝑣1 ∀𝑣∈𝑉, d ∈ 𝐷, f∈𝐹𝑗, h∈H (2.11)

𝑋𝑖𝑣𝑓 ∈ {0,1} ∀ 𝑖 ∈ 𝐼, ∀𝑣 ∈ 𝑉, ∀𝑓 ∈ 𝐹 (2.12)

𝐿𝑣𝑓 ∈ {0,1} ∀𝑣 ∈ 𝑉, ∀𝑓 ∈ 𝐹 (2.13)

𝐶𝑣𝑓 ∈ 𝑍≥0 ∀𝑣 ∈ 𝑉, ∀𝑓 ∈ 𝐹 (2.14)

𝑉𝑣 ∈ {0,1} ∀𝑣 ∈ 𝑉 (2.15)

𝑅𝑑𝑣ℎ ∈ {0,1} d ∈ 𝐷,v ∈ 𝑉, h∈H (2.16)

The constraint (2.3) assures that all the demands are satisfied. The number of

consumers being served by a specific frequency and vehicle are calculated using (2.2).

The value of 𝐿𝑣𝑓 is calculated using constraints (2.4) and (2.5). Constraint (2.6) decides

whether a vehicle of type 𝑣 is used. Vehicle capacity limitations are imposed to the

model by constraints (2.7) and (2.8). The first one assures that the trucks are loaded

with the products occupying a space which is less than or equal to the carrying capacity

of each vehicle. The latter assures the same on coinciding frequencies. The constraint

(2.9) sets 𝑠𝑚𝑎𝑥 as the maximum number of clients that may be visited on a route each

day. Some customers are not eligible to be on the same route simultaneously due to

their geographical location. This restriction is reflected by constraint (2.10). The

redundant deadheading calculations are omitted by the constraint (2.11). The

remaining,2.12 to 2.16 declare the domain of the decision variables.

For further details about the mathematical formulation one can see Dastjerd & Ertogral

(2019) [14].

15

2.4 Approximate Dynamic Programming Heuristic

In this section, we propose a heuristic solution for the problem based on Approximate

Dynamic Programming (ADP). ADP encompasses a wide range of computational and

modeling techniques used to address complex decision problems with large

dimensions. ADP is particularly useful in overcoming the well-known issue of the

dimensionality curse, which hinders the application of Bellman's equation. The use of

an approximate value function is fundamental in ADP to facilitate decision-making.

To estimate the objective function's value at each ADP iteration, we employ the Fix

and Optimize (FO) heuristic. In a prior work by Dastjerd & Ertogral (2019) [14], we

developed the original FO heuristic and applied it to the current problem. In the

subsequent sections, we provide the recursive equation for our proposed ADP

approach, explain the steps for implementing the FO heuristic, and then outline the

steps of our suggested ADP methodology.

2.4.1 Suggested approximate dynamic programming

2.4.1.1 Formulation of the recursive equation

ADP, which stands for Approximate Dynamic Programming, is a powerful method

used to handle large-scale decision-making processes involving discrete time

multistage optimization. In these problems, there exists a state space 𝑆, and at each

stage, the system is in a specific state 𝑆𝑡 ∈ 𝑆, from which a decision 𝑥𝑡 can be made.

After making a decision 𝑥𝑡, the system receives rewards or incurs costs, denoted as

𝐶𝑡(𝑆𝑡; 𝑥𝑡) , and transitions to a new state 𝑆𝑡 + 1. Consequently, decisions at each state

are conditionally dependent on all previous states and decisions. As a result, the

decision made not only affects immediate costs but also influences the environment in

which future decisions are made, thereby impacting upcoming costs.

Dynamic programming tackles complex decision-making problems by breaking them

down into smaller subproblems. The optimal solution for the overall problem is

achieved by obtaining optimal solutions for each of the subproblems, as outlined in

Bellman & Kalaba (1957) [5].

In our specific scenario, the stages of the dynamic programming formulation

correspond to the customers (indexed with 𝑖). At each iteration, we determine whether

16

a frequency-vehicle-customer assignment is appropriate for that particular customer or

not. The decision variable at each stage is denoted as 𝑥𝑖𝑣𝑓, and we must decide whether

to set 𝑥𝑖𝑣𝑓to 1 or to 0 for each customer 𝑖. Setting 𝑥𝑖𝑣𝑓to 1 for a specific (𝑣, 𝑓) pair

implies that 𝑥𝑖𝑣𝑓 is set to 0 for all other (𝑣, 𝑓) options for customer 𝑖 since each

customer can only be assigned to a single vehicle and frequency pair. When making

decisions about the 𝑥𝑖𝑣𝑓 values, we consider all available vehicle capacity options for

each frequency for the current customer 𝑖, which constitutes the state in dynamic

programming terminology. At each stage, when we are deciding the 𝑥𝑖𝑣𝑓value for a

customer, the state of the system consists of the remaining capacity for each vehicle-

frequency pair in terms of both remaining volume (𝐶𝑎𝑝𝑖) and the remaining number

of daily customers (𝐶𝑣𝑓) that can be assigned to it. This state, also referred to as

capacity state, 𝐶𝑎𝑝𝑖, is naturally determined by the decisions already made before the

current stage. In our implementation, we utilize a mathematical model to determine

the state of the system at each stage.

At each stage, we must calculate the incremental cost of allocating or not allocating

the current customer to a vehicle-frequency pair, given that the capacity state is 𝐶𝑎𝑝𝑖.

The most crucial factor is the estimated solution value of the objective function when

there are 𝑖 remaining consumers, and 𝐶𝑎𝑝𝑖 represents the capacity state for customer i

at stage 𝑖. Taking into account these dependencies and definitions, we present the

forward recursion equation below:

Notations:

𝐶𝑎𝑝𝑖: Available capacity state at each stage for customer 𝑖, 𝑖∈𝐼.

𝐾(𝑖, 𝐶𝑎𝑝𝑖): Value of optimal objective function of the partial problem for customers 𝑖,

𝑖 + 1, 𝑖 + 2, … , |𝐼| customers the capacity state 𝐶𝑎𝑝𝑖.

𝐼(𝑥𝑖𝑣𝑓, 𝐶𝑖): Incremental cost of 𝑥𝑖𝑣𝑓 (equating to 1 or 0), for customer 𝑖∈𝐼, if we have

capacity state 𝐶𝑎𝑝𝑖.

𝑓𝑖+1 (𝐶𝑎𝑝𝑖, 𝑥𝑖𝑣𝑓): The function that returns the capacity state at customer 𝑖+1, if we

have capacity state 𝐶𝑎𝑝𝑖 before customer 𝑖 and we take the decision 𝑥𝑖𝑣𝑓 (Setting it to

1 or 0).

Forward recursive equation of the problem:

17

𝐾(𝑖, 𝐶𝑎𝑝𝑖)= 𝑚𝑖𝑛
{
𝑥𝑖𝑣𝑓=0 𝑜𝑟 1,𝑣=1,…, 𝑉

𝑓=1,…,𝐹
}

{𝐼(𝐶𝑎𝑝𝑖, 𝑥𝑖𝑣𝑓) + 𝐾 (𝑖 + 1, 𝑓(𝐶𝑎𝑝𝑖, 𝑥𝑖𝑣𝑓))}

𝐾(𝑁 + 1, 𝐴𝑛𝑦 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑠𝑡𝑎𝑡𝑒) = 0.

Approximate dynamic programming we suggest is founded on an algorithmic

approach that progresses forward in number of customers. To solve this problem using

traditional dynamic programming, we would need to identify the exact value function

𝐾 (𝑖 + 1, 𝑓(𝐶𝑎𝑝𝑖, 𝑥𝑖𝑣𝑓)) for each value of 𝐶𝑎𝑝𝑖 which becomes so complex when the

data size increases. Hence, instead of calculating the exact value for the objective

function of the proceeding steps, we try to approximate it through implementation of

a problem specific heuristic method. In this paper, we employ a Fix and Optimize

heuristic for solving the partial problem approximately in each iteration of the

approximate dynamic programming. The results obtained from the Fix and Optimize

method (FO) is used as the approximate optimal value in place of 𝐾 (𝑖 +

1, 𝑓(𝐶𝑎𝑝𝑖, 𝑥𝑖𝑣𝑓)) in the recursive formula. The problem specific heuristic FO relies on

breaking the main problem down into smaller and easier sub problems. The details of

the implemented FO are given below.

2.4.2 Fix and optimize heuristic

Fix and optimize is a two-phase heuristic comprising a first phase that generates a

feasible solution of good quality, followed by a second phase focused on improving

the solution obtained in the initial phase. The key concept behind this heuristic is to

solve the main problem by dividing it into sequential partial integer problems. This

approach reduces solution times while still producing high-quality solutions. In this

method, the problem is divided into subsets of customers. We will outline the phases

of the fix and optimize heuristic and provide detailed steps in the following sections.

During the first phase of the Fix and Optimize (FO) heuristic, the main problem is

partitioned into smaller subproblems based on a predefined criterion, which, in this

case, is the customer index. At each iteration, only the variables of one subproblem are

expressed as integers or binaries, while the variables in the remaining subproblems are

defined as linear variables or set to fixed values from previous iterations. This process

18

continues until all variables become integers, and the final solution is saved for further

improvement in the next phase. The problem addressed in Phase I at iteration i is

illustrated in Figure 2.1.

Integer variables, fixed to

the values in iteration 𝑖 − 1

Integer variables,

optimized in

iteration 𝑖

Relaxed variables as

continuous, optimized in

iteration 𝑖

𝐴1 𝐴2 …. 𝐴𝑖−1 𝐴𝑖 𝐴𝑖+1 𝐴𝑖+2 …. 𝐴𝑝

Figure 2.1:The problem solved at iteration 𝒊 in Phase I.

The details of phase I of the FO version for our problem are given below;

 Phase I

 Step 1. Divide the customers into 𝑃 sub groups with equal number of customers,

or as equal as possible. Divide the decision variables in to 𝑃 sub groups

corresponding to 𝑃 customer groups. Let 𝐴𝑖 be the set of all binary variables in the

𝑖𝑡ℎ sub group.

 Step 2. Set the iteration counter 𝑖 to 1.

 Step 3. If 𝑖 > 1, Fix the binary variables in 𝐴𝑗 for 𝑗 = 1. . 𝑖 − 1, to the values of

variables found in iteration 𝑖 − 1.

 Step 4. Set the variables in 𝐴𝑖 as binary variables.

 Step 5. Relax the binary variables in 𝐴𝑗 for 𝑗 = 𝑖 + 1, 𝑖 + 2, . . , 𝑃 as linear

variables.

 Step 6. Solve the complete model and set 𝑖 = 𝑖 + 1. If 𝑖 < 𝑃 go to step 3. If 𝑖 =

𝑃, STOP.

In the second phase, the main problem is also divided into the same subproblems as in

the first phase. The variables in this phase are defined as either integers, or they are set

19

to the fixed values obtained in the previous phase. At iteration 𝑖, we solve the entire

model with all binary variables fixed to the values from the previous iteration, except

for 𝐴𝑖, which is considered as an integer and re-optimized. If any improvement is

observed in the objective function, the algorithm starts the process again. This

procedure continues until no further improvements are observed. The problem

addressed in Phase II at iteration 𝑖 is depicted in Figure 2.2:

Integer variables, fixed to

the values in iteration 𝑖 − 1

Integer variables,

optimized in

iteration 𝑖

Integer variables, fixed to

the values in iteration 𝑖 − 1

𝐴1 𝐴2 …. 𝐴𝑖 -1 𝐴𝑖 𝐴𝑖+1 𝐴𝑖+2 …. 𝐴𝑝

Figure 2.2: The problem solved at iteration 𝒊 in Phase II.

The steps of the second phase of the FO are illustrated below:

Phase II

 Step 1. Set the counter 𝑖 to 1.

 Step 2. Clear the values of all variables in 𝐴𝑖 and re-define them as binaries.

 Step 3. if 𝑖 > 1 then for 𝑗 = 1, 2, . . , 𝑃 and 𝑗 ≠ 𝑖 set the variable values in 𝐴𝑗

to values found in iteration 𝑖 − 1. If 𝑖 = 1 then for 𝑗 = 1, 2, . . , 𝑃 and 𝑗 ≠ 𝑖 set the

variable values in 𝐴𝑗 to values found in Phase I.

 Step 4. Solve the complete model, set 𝑖 = 𝑖 + 1.

 Step 5. Check the objective value, if the objective value is better than best

solution so far and 𝑖 < 𝑃, update the best solution as the current solution and go

to step 1. If no improvement occurred in the current iteration and 𝑖 < 𝑃 go to step

2. If no improvement occurred in the current iteration and 𝑖 > 𝑃 STOP.

2.4.3 Look ahead strategy for ADP

During each ADP step, we need to determine the value of 𝑥𝑖𝑣𝑓 for a specific customer

𝑖, which can either be set to 1 or 0 for each possible vehicle-frequency combination.

However, as the data size increases, the number of combinations to be checked for

20

determining the value of 𝑥𝑖𝑣𝑓 grows rapidly, leading to lengthy solution times for

moderate or large-sized problems. To address this issue, we implemented a "look

ahead" fixation technique, which helped reduce the number of vehicle-frequency pairs

that need to be checked. The concept behind the fixation technique is to predict the

𝑥𝑖𝑣𝑓 values for later customers in the dynamic programming stages that are likely to

be set to 1 in the final solution. As we conduct FO iterations during dynamic

programming, we monitor the 𝑥𝑖𝑣𝑓 values for later customers, and if they frequently

assume the value of 1 or a value close to 1, we fix them to 1. By doing so, we save

significant computational effort since fixing a 𝑥𝑖𝑣𝑓 to 1 for a specific customer 𝑖 and

(𝑣, 𝑓) pair results in setting the remaining 𝑥𝑖𝑣𝑓 values to 0 for the remaining (𝑣, 𝑓)

options for that customer. Our algorithm keeps track of the 𝑥𝑖𝑣𝑓 variables in the last

α% of the FO iterations and if they reach a value of 0.9 or higher in this period, we fix

them to 1. This optimization helps expedite the computation process and improve the

efficiency of the overall algorithm.

2.4.4 Improvement algorithm for ADP

We propose a two-phase improvement algorithm to further enhance the results

obtained from ADP with the look ahead strategy. After analyzing the characteristics

of the solutions generated by ADP, we observed that the significant deviations from

the optimal or best-bound values are primarily attributed to the excessive utilization of

vehicles. Since the vehicle ownership charges represent the most substantial cost

component in our context, assigning an extra vehicle in comparison to the optimal

solution has a substantial impact on the objective function value.

The improvement algorithm is designed to focus on optimizing the fleet composition

and size. In the first phase, we specifically examine solutions where each type of

vehicle in the ADP solution is incrementally increased and decreased by one, while

keeping the number of other vehicles fixed.

Let kv represent the number of vehicles in the solution found by ADP or the best

solution during the improvement process. The steps of phase I in the improvement can

be illustrated as follows;

21

Improvement phase I:

Step 1. Let i=1, and improvement flag = 0, best_solution = The solution from

ADP.

Step 2. Fix the ki= ki+1 and fix the other vehicle numbers to their value in the

best solution so far. Apply ADP. If the solution found is better than the best

solution so far, let best_solution = the current solution, improvement flag = 1.

Else go to next step

Step 3. Fix the ki= ki-1 and fix the other vehicle numbers to their value in the

best solution so far. Apply ADP. If the solution found is better than the best

solution so far, let best_solution = the current solution, improvement flag = 1.

Else go to next step.

Step 4. Let 𝑖 = 𝑖 + 1. If 𝑖 < |𝑉| then go to Step 2, else go to next step

Step 5. If improvement flag = 1 go to Step 1, else STOP and report the

best_solution.

Improvement phase II:

In second phase of the improvement algorithm, we check if there is any improvement

when we replace a vehicle with two smaller size vehicles or with a smaller size vehicle.

Two neighborhoods are defined as explained below:

1. Removing two small vehicle and replacing them with a large one

2. Replacing one large vehicle in the fleet with a small one

We use the defined neighborhoods for changing the fixed 𝑉𝑣 set on the solution

obtained after the first improvement phase. The resulting vehicle numbers are used as

bounds on the number of vehicles that can be used. If the changes in vehicle sets of

the second phase yields improved solutions compared to the solutions from the first

phase, the first phase is restarted with the new vehicle composition and the solution is

updated. Otherwise, the algorithm is terminated and the current best solution is

reported as the final solution.

22

2.4.5 Pseudo codes of the ADP and improvement algorithm

The following section shows the ADP pseudocode:

Notation:

𝐶: Set of Customers

𝑉: Set of Vehicles

𝐹: Set of given frequencies

𝑃0: Set of (𝑖, 𝑣, 𝑓) indices for which 𝑥𝑖𝑣𝑓 are set to 0 in the previous stages in dynamic

programming

𝑃1: Set of (𝑖, 𝑣, 𝑓) indices for which 𝑥𝑖𝑣𝑓 are set to 1 in the previous stages in dynamic

programming

𝑃 : Set of (𝑖, 𝑣, 𝑓) indices for which 𝑥𝑖𝑣𝑓 are set to 1 or 0 in the previous stages using

look ahead strategy in dynamic programming

𝐶𝑎𝑝𝑖: Remaining capacity in terms of volume and assignable customer number in stage

𝑖

𝐿1
𝛼: Set of 𝑥𝑖𝑣𝑓’s for later customers in dynamic programming that have a value near

to 1 (greater than 0.9) in the last 𝛼 percent of the iterations of FO executed in the

dynamic programming.

𝐶𝑜𝑠𝑡0: Approximate cost of setting 𝑥𝑖𝑣𝑓 = 0 in each stage (approximate value for

{𝐼(𝐶𝑎𝑝𝑖 , 0) + 𝐾(𝑖 + 1, 𝑓(𝐶𝑎𝑝𝑖 , 0))})

𝐶𝑜𝑠𝑡1: Approximate cost setting 𝑥𝑖𝑣𝑓 = 1 in each stage (approximate value for

{𝐼(𝐶𝑎𝑝𝑖 , 1) + 𝐾(𝑖 + 1, 𝑓(𝐶𝑎𝑝𝑖 , 1))})

ADP pseudocode

Input 𝑃0, 𝑃1, 𝐶𝑎𝑝𝑖 , ∀𝑖 ∈ 𝐶, 𝑣 ∈ 𝑉, 𝑓 ∈ 𝐹

1. for each 𝑖 = 1. . |𝐶|

2. if ∉ 𝑃 and 𝐶𝑎𝑝𝑖 = 𝑡𝑟𝑢𝑒 do

3. Determine 𝐶𝑜𝑠𝑡0 by calling FO (𝑖, 𝑣, 𝑓, 0, 𝑃0, 𝑃1, 𝑃1
′, 𝐶𝑎𝑝𝑖)

4. Determine 𝐶𝑜𝑠𝑡1 by calling FO (𝑖, 𝑣, 𝑓, 1, 𝑃0, 𝑃1, 𝑃1

′ , 𝐶𝑎𝑝𝑖)

5. if 𝐶𝑜𝑠𝑡0 ≤ 𝐶𝑜𝑠𝑡1 then

6. 𝑃0 = 𝑃0 ∪ (𝑖, 𝑣, 𝑓)

7. else

8 if (𝑖, 𝑣, 𝑓) ∈ 𝐿1
𝛼

 9 𝑃1
′ = 𝑃1

′ ∪ (𝑖, 𝑣, 𝑓)

Else

23

10 Else

11. 𝑃1 = 𝑃1 ∪ (𝑖, 𝑣, 𝑓)

12. 𝑃0 = 𝑃0 ∪ {(𝑖, 𝑣′, 𝑓′)| 𝑣′ ∈ 𝑉\{𝑣}, 𝑓′ ∈ 𝐹\{𝑓}}

13 end if

14. end if

15. end if

16. end for

17. end for

18. return Cost (null, null, null, 𝑃0, 𝑃1, 𝑃1
′, 𝐿1

𝛼)

Steps of the improvement phase and the notations are defined below:

Notations:

𝑁: Set of neighborhoods generated in the first phase, {𝑛1, 𝑛2, 𝑛3, 𝑛4}.

𝑁′: Set of neighborhoods generated in the second phase, {𝑛′1, 𝑛′2}.

𝑁𝑣: Set of bounds generated by applying moves in 𝑁 to 𝑉.

𝑁𝑣
′: Set of bounds generated by applying moves in 𝑁′ to 𝑉.

𝐶: Set of customers

𝑉: Set of vehicles

𝐹: Set of frequencies

𝐽: Neighbors

𝑃1: Set of the (𝑖, 𝑣, 𝑓) triples that are fixed to 1

𝐶𝑜𝑠𝑡: Value of objective function from ADP

𝐶𝑜𝑠𝑡𝑛𝑣
′ : Value of objective function for the first phase

𝐶𝑜𝑠𝑡𝑛′𝑣
′ : Value of objective function for the second phase

𝑛1: Increasing large vehicles number by 1

𝑛2: Decreasing large vehicles number by 1

𝑛3: Increasing small vehicles number by 1

𝑛4: Decreasing small vehicles number by 1

𝑛′: Addition of one small vehicle and exclusion of one large vehicle

𝑛′2: Exclusion of two small vehicles and addition of one large vehicle

24

Improvement Stage Pseudocode

Input 𝑃1, 𝐶𝑜𝑠𝑡, 𝑁𝑣 , 𝑁𝑣
′ , ∀𝑖 ∈ 𝐶, 𝑣 ∈ 𝑉, 𝑓 ∈ 𝐹, 𝑗 ∈ 𝐽

1. initialize 𝑗 = 0 and 𝑣 ∈ 𝑃1 do

2. Calculate 𝐶𝑜𝑠𝑡𝑛𝑣
′ by calling 𝐹&𝑂 (𝑖, 𝑣, 𝑓, 𝑁𝑣)

3. if 𝐶𝑜𝑠𝑡𝑛𝑣
′ ≤ 𝐶𝑜𝑠𝑡 then

4. 𝐶𝑜𝑠𝑡 ← 𝐶𝑜𝑠𝑡𝑛𝑣
′ , 𝑉 ← 𝑁𝑣 do

5. Go to step 1

6. else if

7. 𝑗 ≠ |𝑗| 𝑠𝑒𝑡 𝑗 ← 𝑗 + 1 and go to step 2

8. else

9. Set 𝑘 = 0 do

10. Calculate 𝐶𝑜𝑠𝑡𝑛′
′ by calling 𝐹&𝑂 (𝑖, 𝑣, 𝑓, 𝑁𝑣

′
)

11. if 𝐶𝑜𝑠𝑡𝑛′𝑣
′ ≤ 𝐶𝑜𝑠𝑡 then

12. 𝑘 ≠ |𝑘| 𝑠𝑒𝑡 𝑘 ← 𝑘 + 1 and go to step 10

13. else if

 14. 𝑘 = |𝑘| 𝑎𝑛𝑑 𝐶𝑜𝑠𝑡𝑛′𝑣
′

≤ 𝐶𝑜𝑠𝑡 then

15. Go to step 1.

 16. Else

17. end if

18. end if

19 return 𝐶𝑜𝑠𝑡 (𝑖, 𝑣, 𝑓)

2.5 Problem Space Search Metaheuristics

In this section, we will provide a brief explanation of the proposed metaheuristic and

then outline the algorithm steps. The Problem Space Search (PSS) was first introduced

by Storer et al. (1992) [50] as a novel metaheuristic algorithm. According to Naphade

et al. (1997) [35], PSS is a solution technique that uses another heuristic to perform a

local search. The heuristic employed in PSS must be fast and capable of producing

acceptable solutions. The PSS metaheuristic requires an initial feasible solution, a

problem-specific fast heuristic, and a method for generating neighborhoods. Unlike

traditional search methods, PSS generates neighborhoods by perturbing the problem

data or adjusting heuristic parameters. The perturbed data is then used as input for the

25

problem-based heuristic, while the original data is used to evaluate the quality of

solutions within each neighborhood. A pair (ℎ, 𝑝) represents a neighborhood in which

the search is conducted. Here, h represents the heuristic method, and p represents the

problem data. Applying the heuristic to the problem yields the solution, which can be

represented as 𝑠 = ℎ(𝑝). The essence of PSS lies in the repeated application of the

heuristic with altered data, leading to changes in decision sequences within the

heuristic. The quality of solutions produced by PSS depends on factors such as the

suitability and efficiency of the base heuristic. It is crucial to choose a problem-specific

heuristic that can produce quality solutions within reasonable time frames.

Additionally, the magnitude of perturbations must be appropriate—not too large or too

small—to ensure variation in instances without compromising solution quality.

Here, we introduce two variations of the PSS metaheuristic, both of which incorporate

the Fix and Optimize (FO) technique proposed in our previous paper, Dastjerd &

Ertogral (2019) [14]. First, we present PSSI, which slightly modifies the cost data of

the problem. Second, we introduce PSSII, which involves changes in heuristic

parameters for neighborhood generation. The steps for PSS are described in following

sections.

2.5.1 PSSI description and steps

The problem involves various cost parameters, including holding and replenishment

costs, deadheading and per kilometer costs, and vehicle ownership costs. To create

different instances for the problem, we use a perturbation parameter, β, which helps

generate upper and lower limits for each cost component, C. The cost ranges are then

utilized to generate new random values for each cost parameter, ensuring they fall

within the high and low levels specified by the cost range. Each newly generated

random instance is then fed into the fix and optimize algorithm.

During the process, the objective function value for each unique random instance is

calculated using the original cost data. After each call to the heuristic, the best current

solution value is updated, and the values of the variables corresponding to the best

solution are saved. The solution obtained in the initial phase is then used in the second

phase for further improvement. To guide through the PSSI application, we first provide

26

a list of the notations used to define the steps, followed by instructions on applying the

PSSI method.

Notations:

𝑚: The number of data instances generated randomly.

𝐷𝑖: 𝑖
𝑡ℎ random instance.

𝑅𝑐: Range vector for cost component 𝐶.

𝐶: Vector of original cost component.

𝐶𝑖
𝑟: Vector of random cost component for instance 𝑖.

𝑆𝑖
𝐹𝑂: Solution from FO for instance 𝑖.

𝑆𝑐
∗: Latest best solution

𝑂𝑏𝑗𝑐
∗: Latest best objective value.

𝑂𝑏𝑗𝑖: Objective function value for 𝑖𝑡ℎ random instance.

𝛽: Perturbation parameter

Steps for PSSI algorithm:

Step 1. Equate the instance counter 𝑖 to 1, and the 𝑂𝑏𝑗𝑐
∗ to infinity.

Step 2. Calculate the range vector R for 𝐶 using the equations (4.1) and (4.2).

Step 3. Generate 𝐷𝑖 of instance I using the randomly generated 𝐶𝑖
𝑟 values.

Step 4. Call the first phase of FO and solve the problem for 𝐷𝑖 values.

Step 5. Find the value of 𝑂𝑏𝑗𝑖 by incorporating 𝑆𝑖
𝐹𝑂 and 𝐶 to the objective function

formula.

Step 6. Compare the new objective value with current objective value:

 6.1. If 𝑂𝑏𝑗𝑖 < 𝑂𝑏𝑗𝑐
∗, 𝑂𝑏𝑗𝑐

∗ ← 𝑂𝑏𝑗𝑖 and 𝑆𝑐
∗ ← 𝑆𝑖

𝐹𝑂 .

 6.2. If 𝑂𝑏𝑗𝑖 ≥ 𝑂𝑏𝑗𝑐
∗, go to Step 3.

Step 7. Increase instance counter by 1 and go through steps 3 to 6 until 𝑖 > 𝑚.

Step 8. Select the smallest value of objective function among all the 𝑚 instances.

Step 9. Feed the best current solution 𝑆𝑐
∗ to the second phase of FO, improve and report

the solution value.

27

For better clarity, we provide the flowchart in Figure 2.3 to illustrate the PSSI steps.

follows:

counter i=1 ,

currentObj=infinity

Generate R= C+/-ß *C

{ | ()}
i i i

Data RC RC Rand R= =

()

(,)

i i

ii

FOS FOI Data

obj obj FOS C

=

=

iobj CurrentObj Yes i

i

Currentobj obj

S FOS





No

i>n

No

Yes (,)FinalSolution FOII Currentobj S= Stop

Figure 2.3: Flowchart for PSSI.

2.5.2 PSSII description and steps

The quality and duration of the solution can be influenced by the order in which the

subproblems are solved in FO. Thus, the subproblem solving order becomes crucial.

In this study, we leverage this characteristic to generate random yet acceptable

solutions. In PSSII, we introduce randomization in generating the subproblem orders.

Specifically, for each FO run, the customer index set is randomly regenerated. As a

result, in this version of PSS, the perturbation for neighborhood generation involves

changing the parameters of the heuristic rather than the dataset. The only notation that

differs from PSSI is denoted as 𝐼𝑖
′, which represents the new customer index set for

dataset i. The algorithm steps are outlined below:

Steps for PSSII algorithm:

Step 1. Equate the instance counter 𝑖 to 1, and the 𝑂𝑏𝑗𝑐
∗ to infinity.

Step 2. Produce a random consumer index set 𝐼𝑖
′.

Step 3. Generate the dataset 𝑖 using the 𝐼𝑖
′ to build customer subgroups.

Step 4. Feed the new dataset 𝐷𝑖 to first phase of FO algorithm and solve the problem.

Step 5. Compare the objective function value:

28

 5.1. If 𝑂𝑏𝑗𝑖 < 𝑂𝑏𝑗𝑐
∗, 𝑂𝑏𝑗𝑐

∗ ← 𝑂𝑏𝑗𝑖 and 𝑆𝑐
∗ ← 𝑆𝑖

𝐹𝑂 .

 5.2. If 𝑂𝑏𝑗𝑖 ≥ 𝑂𝑏𝑗𝑐
∗, go to Step 2.

Step 6. Increase 𝑖 by 1 and go through steps 2 to 5 until 𝑖 > 𝑚.

Step 7. Select the smallest value of objective function among all the 𝑚 instances.

Step 8. Feed the best current solution 𝑆𝑐
∗ to the second phase of FO, improve and report

the solution value.

To enhance clarity, we provide a flowchart in Figure 2.4 which illustrates the steps of

PSSII:

counter i=1 ,

currentObj=infinity

' (1,)i Rand nI =

'
()

(,)

i

ii

iFOS FOI I

obj obj FOS C

=

=

iobj CurrentObj Yes i

i

Currentobj obj

S FOS





No

i>n

No

Yes (,)FinalSolution FOII Currentobj S= Stop

Figure 2.4: Flowchart for PSSII.

2.6 Computational Results

We conducted a numerical analysis of the proposed solution approach using the dataset

generated as described in 2.4.12.6.1. The details of the analysis setup and the obtained

results are presented in the following subsections.

2.6.1 Dataset

The proposed heuristic is assessed through four distinct scenarios, each characterized

by varying demand levels and customer clusters. These scenarios correspond to the

ones used in Dastjerd & Ertogral (2019) [14]. Scenario 1 and 2 represent cases with

normal demand, with scenario 2 further grouping customers based on their

geographical location. Scenarios 3 and 4 present high demand versions, with the

demand increased by 50%, of scenario 1 and 2, respectively.

29

Regarding problem variations, we defined 24 different settings, taking into account

vehicle capacities (cap), costs per kilometer for vehicles (R), vehicle ownership costs

(A), inventory holding costs (h), and fixed setup cost (K). In Table 2.2, 1.2A denotes

cases with a 20% increase in ownership costs, while 1.4A indicates settings with a

40% increase in ownership costs for larger vehicles. Similar patterns apply to 1.2R and

1.4R in terms of cost per kilometer for vehicles. Across all parameter settings, 40

customers are served with 8 owned vehicles, and their yearly demand is generated

based on a uniform distribution ranging from 80 to 120 units. The parameter settings

are presented in Table 2.2.

Table 2.2: Problem characteristics.

Setup cost Holding

cost

Ownership

cost

Routing

cost

Capacity Problem

No.

k=50

h=300

1.2A

1.2R
7,10 1

14,20 2

21,27 3

1.4R

7,10 4

14,20 5

21,27 6

1.4A

1.2R
7,10 7

14,20 8

21,27 9

1.4R

7,10 10

14,20 11

21,27 12

h=600

1.2A

 1.2R
7,10 13

14,20 14

21,27 15

1.4R

7,10 16

14,20 17

21,27 18

1.4A
1.2R

7,10 19

14,20 20

21,27 21

1.4R

7,10 22

14,20 23

21,27 24

30

2.6.2 ADP results with improvement step

The proposed heuristic was implemented to evaluate its performance on the generated

instances. The results obtained from the heuristic were then compared to those

obtained from CPLEX. All of the problems were solved within the 3-hour time limit

in CPLEX, and for some instances, the results are reported as best lower bounds. The

gaps from the lower bounds are denoted with an asterisk (*). We conducted an analysis

of the results, categorizing them based on the gaps from CPLEX results, fleet

compositions, and solution durations. The tabulated results are presented below.

From the gaps presented in Table 2.3, we can conclude that the solutions obtained from

the ADP heuristic demonstrate satisfactory performance. The gaps, ranging from 4.5

to 9.24 average deviations across the four scenarios, are mostly close to the lower

bounds obtained from CPLEX within the 3-hour run time. As a result, the deviation

from the actual optimal solution is expected to be even less than these values.

Observing the data in Table 2.3 , it becomes evident that clustering has a negative

impact on the performance of the ADP heuristic when comparing scenario 2 to

scenario 1 and scenarios 4 to scenario 2. This outcome is expected because clustering

makes the problem more challenging for the fix and optimize process. Any incorrect

early assignment of a vehicle-frequency pair to a customer becomes harder to rectify

through later assignments due to the significantly reduced feasible solution space in

the clustered cases compared to scenarios with no clusters.

The challenging nature of the clustered problems is evident from the fact that the

number of problems solved to optimality within the 3-hour run time is much higher in

scenarios 1 and 3 when compared to scenarios 2 and 4.

The performance of ADP is negatively affected by the demand. In high-demand

scenarios, the solution typically requires a larger number of vehicles, leading to an

increase in the number of alternatives that need to be considered. As a result, higher

demand makes the problem more complex, thus slightly reducing the performance of

the heuristic.

In Table 2.4, when considering the scenario-based average vehicle utilization, the total

average number of vehicles assigned for distribution operations increases with the

addition of clusters and by increasing the demand values by 50%. For instance, moving

31

from scenario 2 to 3, the total average changes from 2.25 to 2.67, and in terms of fleet

composition, the number of small trucks changes from 1.58 to 2. This increase is

attributed to the higher demand in scenario 3, while the available truck capacity

remains unchanged. Similarly, transitioning from scenario 2 to 4 results in changes in

the average total number of utilized vehicles and fleet composition. The addition of

clusters in scenarios with higher demands leads to alterations in the total average

number of vehicles, whereas in scenarios with base demand, it remains the same.

Table 2.5, tabulates solution times for different scenarios. As it is anticipated, solving

scenarios with clusters yield longer solution times resulting from the limitation put on

the route generation. That is, there is a constraint on the customers to be served on the

same route. Geographically distant ones cannot be visited on the same route in a day.

This constraint leads to an increase in the number of choices to be assessed for

assigning customers to vehicles and frequencies.

Figure 2.5 to Figure 2.8 depict the percentages of cost components relative to the total

cost in each specific scenario. The considered cost components include setup cost,

inventory holding cost, vehicle ownership cost, and approximate routing cost. Across

all scenarios and problem settings, ownership cost consistently emerges as the highest

cost item, accounting for 30% to 60% of the total cost. Following closely is the setup

cost, which fluctuates between 20% and 50% of the total annual cost. Inventory

holding cost constitutes approximately 5% to 30% of the total cost. As mentioned

earlier, the routing cost has the lowest percentage, making up to 20% of the total cost.

These cost percentages align with the expected distribution for logistics costs in

practice, where inventory-related costs constitute about one third of the total logistics

costs, while the remaining two thirds are attributed to transportation expenses.

The following set of charts, Figure 2.9 to Figure 2.12, illustrate the frequency

distribution for each frequency set in each problem scenario. These charts provide

insights into how frequently each set of frequencies (daily, weekly, bi-weekly, thrice-

weekly, or quarto-weekly) is utilized in each parameter setting within each scenario.

In scenarios 1 and 2, bi-weekly replenishment plans are predominantly favored, while

in scenarios 3 and 4, customers are mostly replenished with weekly delivery programs.

The reason for this disparity between scenarios lies in the demand levels. In the first

32

two scenarios, the demand is relatively low, allowing for a larger consolidation of

products in a single truck, considering the carrying capacities. On the other hand, in

scenarios 3 and 4, the demand values are increased by 50%, while the vehicle

capacities remain the same. Consequently, there is less opportunity for consolidation

in a single truck, resulting in a greater need for more frequent replenishments to meet

customer demands.

Table 2.3: Percentage deviations from best bounds /optimal for improved ADP.

 Scenario 1 Scenario 2

Scenario 3

Scenario 4

1 1.67%* 3.76%* 13.38% 14.76%*

2 4.15% 7.46%* 1.61%* 6.94%*

3 1.23%* 10.26%* 1.23% 12.93%*

4 9.90% 4.77%* 12.44% 10.95%*

5 3.54% 2.18%* 1.19% 5.60%*

6 1.75%* 10.06%* 1.23% 7.67%*

7 12.49% 14.72%* 13.44% 11.50%*

8 1.62%* 8.38%* 1.01% 10.04%*

9 1.67% 10.19%* 1.32%* 6.83%*

10 12.34% 6.75%* 11.77% 7.52%*

11 1.32% 7.75%* 1.01% 10.78%*

12 1.43%* 10.00%* 1.34%* 7.10%*

13 9.47% 4.16%* 9.99% 11.08%*

14 1.30% 9.97%* 8.54% 7.11%*

15 0.00% 0.00% 1.02% 5.70%*

16 13.01% 5.01%* 16.00% 10.08%*

17 1.12% 9.62%* 0.60% 7.12%*

18 0.00% 0.00% 0.77% 21.33%*

19 12.47% 6.30%* 11.94% 8.08%*

20 1.30% 7.68%* 8.54% 11.75%*

21 0.13% 0.00% 0.82% 3.78%*

22 12.20% 7.41%* 11.28% 7.21%*

23 1.02% 7.29%* 8.54% 12.59%*

24 0.13% 0.00% 0.85% 3.20%*

Ave 4.50% 6.41% 5.75% 9.24%

33

Table 2.4: Scenario based Fleet utilization average for improved ADP.

 Scenario 1 Scenario 2 Scenario 3 Scenario 4

L S L S L S L S

Ave 0.67 1.58 0.54 1.71 0.67 2.00 0.92 2.13

Table 2.5: CPU times (in seconds) for improved ADP.

 Scenario 1 Scenario 2

Scenario 3

Scenario 4

1 233.22 2686.43 2626.93 4567.63

2 384.86 2244.66 241.18 1947.72

3 409.29 4399.31 361.70 4685.58

4 425.80 3627.30 978.29 5127.14

5 320.33 2052.15 399.65 2710.26

6 579.04 3816.51 266.09 4487.38

7 684.45 2343.58 949.97 1886.79

8 655.26 5996.36 658.90 5802.12

9 267.41 4328.48 235.93 5010.19

10 431.78 3660.73 1230.30 3939.08

11 496.26 5868.22 727.76 6409.28

12 274.68 4751.66 502.45 4810.56

13 953.07 2006.66 1086.33 2775.83

14 245.61 2937.31 429.50 3433.01

15 208.42 1758.74 259.50 2512.47

16 437.50 1750.55 1100.78 3065.19

17 253.07 2959.58 437.88 4230.39

18 208.27 1613.82 345.55 2728.12

19 721.72 2138.13 873.62 3701.81

20 303.34 3813.74 449.71 3653.63

21 248.30 1335.90 312.33 2823.36

22 497.28 1619.63 1142.93 2809.44

23 548.66 3410.48 494.57 3602.08

24 192.53 1600.90 232.82 2804.65

Ave 415.84 3030.03 681.03 3730.15

34

Figure 2.5: Cost element percentages for scenario 1.

Figure 2.6: Cost element percentages for scenario 2.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

P
er

ce
n
ta

g
e

o
f

to
ta

l
co

st

Problem No.

Scenario 1

Setup cost

Holding cost

Ownership cost

Routing Cost

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

P
er

ce
n
ta

g
e

o
f

to
ta

l
co

st

Problem No.

Scenario 2

Setup cost

Holding cost

Ownership cost

Routing Cost

35

Figure 2.7: Cost element percentages for scenario 3.

Figure 2.8: Cost element percentages for scenario 4.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

1 2 3 4 5 6 7 8 9 101112131415161718192021222324

P
er

ce
n
ta

g
e

o
f

to
ta

l
co

st

Problem No.

Scenario 3

Setup cost

Holding cost

Ownership cost

Routing Cost

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

1 2 3 4 5 6 7 8 9 101112131415161718192021222324

P
er

ce
n
ta

g
e

o
f

to
ta

l
co

st

Problem No.

Scenario 4

Setup cost

Holding cost

Ownership cost

Routing Cost

36

Figure 2.9: Frequency repetition for scenario 1.

Figure 2.10: Frequency repetition for scenario 2.

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8 9 101112131415161718192021222324

F
re

q
u
en

cy
 t

y
p

e
re

p
it

it
io

n

Problem No.

Scenario 1

Daily

Weekly

bi-weekly

thrice-weekly

quarto-weekly

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8 9 101112131415161718192021222324

F
re

q
u
en

cy
 r

ep
it

it
io

n

Problem No.

Scenario 2

Daily

Weekly

bi-weekly

thrice-weekly

quarto-weekly

37

Figure 2.11: Frequency repetition for scenario 3.

Figure 2.12: Frequency repetition for scenario 4.

2.6.3 PSS Results

The perturbation factor in the PSSI algorithm is considered in two different values,

denoted as β₁ and β₂, with values set to 10% and 20%, respectively. For each β value,

50 instances were generated and used in the PSSI metaheuristics.

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 101112131415161718192021222324

F
re

q
u
en

cy
 r

ep
it

it
io

n

Problem No.

Scenario 3

Daily

Weekly

bi-weekly

thrice-weekly

quarto-weekly

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

F
re

q
u

en
cy

 r
ep

it
it

io
n

Problem No.

Scenario 4

Daily

Weekly

bi-weekly

thrice-weekly

quarto-weekly

38

In this section, we analyze and discuss the results obtained from PSSI, PSSII, and the

basic FO approach. We aim to observe the improvements brought by PSSI and PSSII

compared to the simple FO method. The results for the two versions of PSS and FO

are presented in several tables, labeled from Table 2.6 to Table 2.13, covering the gaps

from the optimal or best bounds obtained from CPLEX, fleet composition details, and

average solution durations. In these tables, L-S stands for large and small vehicles.

For the first set of tables that show the gaps, the values for the optimal solutions or

best bounds are obtained using the MIP solver CPLEX. Since there is a time limit on

the solutions from CPLEX, all results are obtained within three hours. The values

marked with a star (*) indicate the divergence from the best lower bounds.

This section provides a comparison of the results from the PSS heuristics and FO, and

the comments are categorized into three subsections based on the data presented in the

tables, as described above.

2.6.3.1 Percentage gaps from optimal/best bounds

As explained in previous section, we developed two versions of PSS metaheuristic for

the integrated fleet sizing and replenishment planning problem. The first version, PSSI

uses cost data perturbation for generating neighborhoods. Results from PSSI with

perturbation factors of 𝛽1 =10% and 𝛽2 = 20% are presented in Table 2.6 and Table

2.9. Comparing the gaps from PSS versions to FO, a significant decrease is observable.

In general, addition of clusters leads to higher annual costs. The fact behind this

objective function value growth is that, geographical clustering brings limitations to

the transportation operations in terms of vehicle-customer assignment. Fixed vehicle

capacities and the customers which cannot be served on the same routes, necessitate a

higher number of vehicles for satisfying the same demand amount comparing to the

case in which there is no rule for route generation. In our setting the highest cost is the

ownership cost which is in accordance with the number of assigned vehicles. Hence,

only one extra vehicle added to the fleet can cause a noticeable increase in total cost.

In scenario 2 and scenario 4 we cluster customers into groups, and hence the highest

gaps belong to these two scenarios. Highest gap for FO in Scenario2 is for problem

number 16 with value of 16.07% from the best bound. As it is seen in Table 2.6 PSS

reduced the gap value to 5.01%. The same pattern is tracible in Scenario4 with the

39

highest FO gap belonging to 17. problem with value of 31.70% which is reduced to

7.12% by applying PSS. According to Table 2.9, PSS variations enhance the solution

by generating a variety of neighborhoods through cost data perturbation and sub

problem order randomization. Table 2.9 illustrates that the highest gaps in three of the

four scenarios belong to FO which proves the effectiveness of PSS metaheuristic.

Considering PSS variations, it seems that PSSI with perturbation factor of 20%

outperforms the other two versions. According to Table 2.9, minimum gaps three of

four scenarios belong to PSS (β2).

Table 2.6: Deviations from objective function value for FO and PSSI (β1)

Problem

No

Scenario1 Scenario2 Scenario3 Scenario4

FO PSSI

(β1)

FO PSSI

(β1)

FO PSSI

(β1)

FO PSSI

(β1)
1 14.70%* 9.95%* 3.76%* 3.76%* 17.61% 10.93% 15.62%* 15.62%*

2 4.57% 3.53% 7.46%* 7.46%* 1.34%* 1.64%* 21.17%* 6.94%*

3 1.65%* 1.41%* 10.29%* 10.26%* 2.06% 1.44% 12.93%* 12.28%*

4 9.90% 1.55% 16.58%* 4.77%* 17.05% 11.55% 12.00%* 12.00%*

5 4.15% 3.07% 2.18%* 2.18%* 1.43% 1.29% 5.60%* 5.60%*

6 1.90%* 1.30%* 10.06%* 10.04%* 1.47% 0.87% 7.67%* 7.66%*

7 13.66% 4.00% 14.72%* 6.56%* 13.91% 13.96% 11.50%* 11.50%*

8 2.47%* 1.62%* 8.38%* 6.27%* 11.71% 1.01% 20.78%* 10.04%*

9 0.98% 0.98% 10.19%* 10.17%* 2.20%* 2.04%* 6.83%* 6.83%*

10 12.98% 13.15% 14.49% 14.49%* 13.51% 7.26% 11.19%* 11.19%*

11 2.34% 1.60% 7.75%* 6.17%* 9.88% 1.01% 27.42%* 10.78%*

12 1.35%* 1.28%* 10.00%* 9.97%* 1.98%* 1.32%* 7.10%* 7.10%*

13 12.93% 9.46% 15.70%* 4.16%* 15.69% 9.99% 12.67%* 12.63%*

14 1.18% 0.22% 10.31%* 6.62%* 13.82% 0.31% 20.35%* 7.11%*

15 0.06% 0.23% 0.00% 0.00% 0.94% 0.76% 5.70%* 5.69%*

16 13.88% 9.94% 16.07%* 5.01%* 15.79% 11.96% 12.25%* 12.25%*

17 1.79% 1.02% 9.96%* 6.76%* 0.60% 0.60% 31.70%* 7.12%*

18 0.06% 0.46% 0.00% 0.46% 1.25% 0.76% 21.33%* 21.32%*

19 12.60% 13.05% 14.01%* 15.10%* 13.48% 7.66% 12.15%* 12.11%*

40

20 1.46% 0.81% 7.68%* 7.68%* 0.31% 0.60% 29.99%* 21.24%*

21 0.29% 0.23% 0.00% 0.46% 1.76% 0.76% 3.78%** 3.77%*

22 11.95% 12.24% 14.68%* 15.87%* 7.29% 7.29% 11.80%* 11.80%*

23 1.50% 0.81% 7.29%* 7.29%* 13.33% 0.32% 21.74%* 21.74%*

24 0.29% 0.23% 0.00% 0.46% 1.41% 0.76% 3.20%* 3.20%*

Ave 5.36% 3.84% 8.82% 6.75% 7.49% 4.00% 14.44% 10.73%

Table 2.7: Deviations from objective function value for FO and PSSI (β2).

Proble

m No

Scenario1 Scenario2 Scenario3 Scenario4

FO PSSI

(β2)

FO PSSI

(β2)

FO PSSI

(β2)

FO PSSI

(β2) 1 14.70%* 9.95%

*

3.76%* 3.76%* 17.61

%

11.22

%

15.62%

*

15.62%

* 2 4.57% 0.51% 7.46%* 7.46%* 1.34%

*

1.64%

*

21.17%

*

6.94%*

3 1.65%* 1.22%

*

10.29%

*

10.26%

*

2.06% 1.36% 12.93%

*

12.28%

* 4 9.90% 9.90% 16.58%

*

4.77%* 17.05

%

11.64

%

12.00%

*

12.00%

* 5 4.15% 1.35% 2.18%* 2.18%* 1.43% 1.12% 5.60%* 5.60%*

6 1.90%* 1.40%

*

10.06%

*

10.04%

*

1.47% 1.18% 7.67%* 7.66%*

7 13.66% 12.49

%

14.72%

*

6.56%* 13.91

%

7.53% 11.50%

*

11.50%

* 8 2.47%* 1.24%

*

8.38%* 6.27%* 11.71

%

1.01% 20.78%

*

10.04%

* 9 0.98% 1.02% 10.19%

*

10.17%

*

2.20%

*

1.90%

*

6.83%* 6.83%*

10 12.98% 4.13% 14.49%

*

14.49%

*

13.51

%

7.26% 11.19%

*

11.19%

* 11 2.34% 1.32% 7.75%* 6.17%* 9.88% 1.01% 27.42%

*

10.78%

* 12 1.35%* 1.11%

*

10.00%

*

9.97%* 1.98%

*

1.28%

*

7.10%* 7.10%*

13 12.93% 9.46% 15.70%

*

4.16%* 15.69

%

9.99% 12.67%

*

12.63%

* 14 1.18% 0.26% 10.31%

*

6.62%* 13.82

%

0.60% 20.35%

*

7.11%*

15 0.06% 0.46% 0.00% 0.00% 0.94% 0.76% 5.70%* 5.69%*

16 13.88% 9.94% 16.07%

*

5.01%* 15.79

%

11.33

%

12.25%

*

12.25%

* 17 1.79% 1.07% 9.96%* 6.76%* 0.60% 0.60% 31.70%

*

7.12%*

18 0.06% 0.46% 0.00% 0.46% 1.25% 0.70% 21.33%

*

21.09%

* 19 12.60% 4.54% 14.01%

*

15.10%

*

13.48

%

7.66% 12.15%

*

12.11%

* 20 1.46% 1.02% 7.68%* 7.68%* 0.31% 0.29% 29.99%

*

11.75%

* 21 0.29% 0.46% 0.00% 0.00% 1.76% 0.76% 3.78%* 3.77%*

41

22 11.95% 12.46

%

14.68%

*

15.87%

*

7.29% 7.29% 11.80%

*

7.60%*

23 1.50% 0.87% 7.29%* 7.29%* 13.33

%

0.60% 21.74%

*

12.59%

* 24 0.29% 0.23% 0.00% 0.46% 1.41% 0.76% 3.20%* 2.99%*

Ave 5.36% 3.62% 8.82% 6.73% 7.49% 3.73% 14.44% 9.76%

Table 2.8: Deviations from objective function value for FO and PSSII.

 Problem

No

Scenario1 Scenario2 Scenario3 Scenario4

FO PSSII FO PSSII FO PSSII FO PSSII

1 14.70%* 1.69%* 3.76%* 2.55%* 17.61% 13.38% 15.62%* 14.23%*

2 4.57% 4.15% 7.46%* 7.39%* 1.34%* 1.61%* 21.17%* 6.09%*

3 1.65%* 1.34%* 10.29%* 10.26%* 2.06% 0.87% 12.93%* 7.77%*

4 9.90% 0.97% 16.58%* 4.04%* 17.05% 12.44% 12.00%* 10.15%*

5 4.15% 3.54% 2.18%* 1.57%* 1.43% 1.19% 5.60%* 3.91%*

6 1.90%* 1.75%* 10.06%* 32.71%* 1.47% 0.95% 7.67%* 2.75%*

7 13.66% 13.71% 14.72%* 10.90%* 13.91% 13.44% 11.50%* 7.52%*

8 2.47%* 1.62%* 8.38%* 7.00%* 11.71% 1.01% 20.78%* 4.86%*

9 0.98% 1.67% 10.19%* 32.74%* 2.20%* 1.39%* 6.83%* 1.58%*

10 12.98% 13.90% 14.49% 11.04%* 13.51% 11.77% 11.19%* 7.05%*

11 2.34% 1.32% 7.75%* 6.46%* 9.88% 1.01% 27.42%* 5.32%*

12 1.35%* 1.43%* 10.00%* 32.55%* 1.98%* 1.53%* 7.10%* 2.20%*

13 12.93% 13.86% 15.70%* 14.73%* 15.69% 9.99% 12.67%* 10.84%*

14 1.18% 1.30% 10.31%* 9.40%* 13.82% 8.54% 20.35%* 4.78%*

15 0.06% 0.00% 0.00% 19.20% 0.94% 0.78% 5.70%* 3.37%*

16 13.88% 13.67% 16.07%* 13.48%* 15.79% 16.00% 12.25%* 9.86%*

17 1.79% 1.12% 9.96%* 8.66%* 0.60% 0.60% 31.70%* 4.83%*

18 0.06% 0.00% 0.00% 19.01% 1.25% 0.74% 21.33%* 18.37%*

19 12.60% 12.65% 14.01%* 12.31%* 13.48% 11.94% 12.15%* 11.16%*

20 1.46% 1.30% 7.68%* 6.87%* 0.31% 8.54% 29.99%* 6.34%*

21 0.29% 0.13% 0.00% 19.11% 1.76% 0.76% 3.78%* 1.28%*

22 11.95% 12.07% 14.68%* 12.73%* 7.29% 11.28% 11.80%* 11.00%*

23 1.50% 1.02% 7.29%* 6.57%* 13.33% 8.54% 21.74%* 6.79%*

42

24 0.29% 0.13% 0.00% 18.78% 1.41% 0.76% 3.20%* 0.76%*

Ave 5.36% 4.35% 8.82% 13.34% 7.49% 5.79% 14.44% 6.78%

Table 2.9: Average, Min and Max gaps from optimal/best bound for FO, PSSI and

PSSII.

Average Gap

Scenario1 Scenario2 Scenario3 Scenario4

Methods

FO 5.36% 8.82% 7.49% 14.44%

PSSI (β1) 3.84% 6.75% 4.00% 10.73%

PSSI (β2) 3.62% 6.73% 3.73% 9.76%

PSSII 4.35% 13.34% 5.79% 6.78%

Min 3.62% 6.73% 3.73% 6.78%

Max 5.36% 13.34% 7.49% 14.44%

2.6.3.2 Fleet composition

Table 2.10 and Table 2.11 present the fleet composition and average number of

assigned vehicles for FO, PSSI, and PSSII, respectively. Table 2.12 shows the total

average vehicle usage for all four solution techniques. In these tables, the columns "L"

and "S" represent large and small vehicle types, respectively.

When analyzing the average vehicle numbers across different scenarios, it is evident

that the addition of clusters leads to a similar pattern as observed in the objective

function values. In Scenario 3, where routes can be generated freely without any

limitations on customer addition except for 𝑠𝑚𝑎𝑥, the average number of large and

small vehicles is significantly lower compared to Scenario 4, where not all customers

can be served on the same route. For example, when applying PSSI with a perturbation

factor of 10%, the average number of used vehicles in Scenario 3 is approximately

2.67, while in Scenario 4, it is around 2.75.

Demand increase is another crucial factor influencing fleet size and vehicle

combinations. In Scenarios 3 and 4, where demand is 50% higher than in Scenarios 1

43

and 2, the average number of vehicles also increases accordingly. For instance, in

Scenario 1, when applying PSSI (β₁), the average number of vehicles is 2.29, whereas

in Scenario 3, it rises to an average of 2.79.

Comparing the solution methods and the results summarized in Table 2.12, it becomes

evident that the highest number of vehicles is used when employing the FO approach.

Implementing the PSS metaheuristic brings improvements in terms of vehicle usage

and cost savings. However, there is no significant difference between the results

obtained from the two PSS variations.

Table 2.10: Average vehicle numbers from FO and PSSI variations.

Scenario1 Scenario2 Scenario3 Scenario4

FO
PSSI

(𝛽1)

PSSI

(𝛽2)
FO

PSSI

(𝛽1)

PSSI

(𝛽2)
FO

PSSI

(𝛽1)

PSSI

(𝛽2)
FO

PSSI

(𝛽1)

PSSI

(𝛽2)

L S L S L S L S L S L S L S L S L S L S L S L S

A

v

e

0

.

5

0

1

.

7

9

0

.

5

4

1

.

5

8

0

.

7

5

1

.

3

3

0

.

4

6

1

.

8

3

0

.

7

9

1

.

2

9

0

.

7

9

1

.

3

3

0.46 2

.

3

3

0.54 2

.

1

3

0.67 2 0.92 2

.

1

7

1.21 1

.

5

4

1.38 1

.

3

8

Table 2.11: Average vehicle numbers from FO and PSSII.

 Scenario1 Scenario2 Scenario3 Scenario4

FO PSSII FO PSSII FO PSSII FO PSSII

L S L S L S L S L S L S L S L S

Ave 0.50 1.79 0.50 1.75 0.46 1.83 0.5 1.8 0.46 2.33 0.67 1.92 0.92 2.17 0.8 1.92

Table 2.12: Average total vehicle usage for FO, PSSI and PSSII.

Average Vehicle Usage

Scenario1 Scenario2 Scenario3 Scenario4

Method

FO 2.29 2.29 2.79 3.08

PSSI (β1) 2.13 2.08 2.67 2.75

PSSI (β2) 2.08 2.13 2.67 2.75

PSSII 2.25 2.25 2.58 2.67

Min 2.08 2.08 2.58 2.67

Max 2.29 2.29 2.79 3.08

44

2.6.3.3 Computational time.

 Regarding computational time, as shown in Table 2.13, the longest solution times are

observed in Sc2 and Sc4. These scenarios involve grouping customers into specific

clusters, where not all customers are allowed to be included. Consequently, serving all

customers requires a higher number of vehicles, leading to an increase in potential

solution choices. More choices for vehicle assignment result in longer solution

durations. Among the different variations of the PSS metaheuristic, PSSII, which

randomizes the subproblem order, achieves the shortest solution duration. This is

because in FO, where the main problem is divided into integer and non-integer blocks

of subproblems, the order of solving these subproblems significantly impacts the

computation. Randomizing the solution order of subproblems leads to a decrease in

CPU time.

Comparing the solution times for FO and the PSS versions while considering the

number of solved instances, it is evident that the CPU times for the PSS variations are

reasonable, given the improvements they bring in terms of solution quality.

Table 2.13: Average solution durations in seconds for FO, PSSI and PSSII.

Average Solution Time

Method Scenario1 Scenario2 Scenario3 Scenario4

FO 746.28 135.12 38.76 231.72

PSSI (β1) 991.94 5818.16 1056.24 9152.84

PSSI (β2) 991.36 5758.25 1029.40 9043.18

PSSII 820.11 5947.11 813.44 7908.26

Min 746.28 135.12 38.76 231.72

Max 991.94 5947.11 1056.24 9152.84

2.7 CONCLUSION

The initial part of this thesis explores two new approaches to address the previously

proposed problem of integrated fleet sizing and delivery planning, where candidate

replenishment frequencies are pre-determined. Our objective is to determine

45

replenishment plans for clients based on defined delivery frequencies, which are

determined by the number of weeks between deliveries, including a daily

replenishment option. The demands are transported to their respective destinations

using a diverse fleet of trucks. Since this problem involves strategic decision-making,

we need to use approximations for routing costs rather than precise details. Our main

goal is to find the optimal customer-vehicle-frequency assignment at the lowest cost.

However, due to the NP-hard nature of the problem, conventional tools like CPLEX

may not provide the best solutions within a reasonable timeframe, particularly for

larger instances.

In this study, we improved the ADP algorithm and showcased its efficacy by applying

it to a range of randomly generated instances with diverse characteristics.

The second solution method implemented, the Problem Space Search (PSS) is a

straightforward metaheuristic method that utilizes a heuristic to create a new search

space within the original problem space by temporarily modifying the data or

parameters of the problem-specific heuristic. We consider two versions of PSS in this

research. In PSSI, cost data is perturbed and fed to the fix and optimize, while in PSSII,

the order in which the fix and optimize subproblems are handled is randomized.

The results showed that the inclusion of clusters in the fleet sizing and replenishment

planning problem led to more challenging problems with higher annual costs. This

increase was attributed to the limitations imposed by geographical clustering on

transportation operations and vehicle-customer assignment.

Applying PSS-based metaheuristics significantly reduced the gaps in comparison to

the Fix-and-Optimize (FO) approach. The PSS variations demonstrated their

effectiveness in enhancing the solution quality by generating diverse neighborhoods

through cost data perturbation and subproblem order randomization. Among the PSS

variations, PSS-I with a perturbation factor of 20% outperformed the other versions,

exhibiting the minimum gaps in three out of the four scenarios.

Regarding fleet composition, the average number of assigned vehicles aligned with the

patterns observed in objective function values. The addition of clusters led to increased

average numbers of large and small vehicles. Demand increases also influenced fleet

size and composition.

46

In terms of computational time, scenarios involving customer clustering and

limitations on customer insertion exhibited higher solution times. PSSII demonstrated

the lowest solution duration among the PSS variations. Comparing solution methods,

it was evident that the PSS variations offered substantial improvements in both

solution quality and computational efficiency, making them viable alternatives to the

FO approach.

47

3 EXTENDED PROBLEM WITH GENERALISED DELIVERY PATTERNS

3.1 Introduction

Retailers are under pressure due to narrow profit margins, compelling them to

consistently pursue operational excellence in logistics. Enhancing the effectiveness of

product delivery from distribution centers to stores remains a continuous endeavor

within the retail industry. As stated in Agrawal & Smith (2015) [1], retail

establishments must ascertain the most advantageous delivery strategies and

streamline the routes taken by vehicles to restock store inventory from warehouses. In

the realm of grocery retail, stores often adhere to recurrent weekly demand trends. As

a result, these retailers address both customer and store requirements by periodically

restocking their stores through specific delivery schedules. These delivery patterns

encompass a particular selection of weekdays when deliveries from the distribution

center consistently reach a specific store within standard weeks – those that lack public

holidays – over a designated planning period. Research evidence confirms that most

grocery businesses adopt such delivery patterns, typically tailored based on sales

volume and store dimensions (Kuhn & Sternbeck (2013) [32]).

Implementing repetitive and store-specific delivery patterns brings forth several

advantages:

(1) Organizing the workforce for the task of replenishing shelves becomes notably

simpler, as the restocking orders consistently arrive at stores on the same

weekdays every week (Gaur & Fisher (2004) [20]).

(2) Similarly, from a transportation standpoint, these delivery patterns provide an

opportunity to establish fundamental cyclic routes during each corresponding

planning phase.

(3) In the distribution center, the allocation of staff and the planning of shifts can

be aligned with projected cumulative picking volumes, which are contingent

upon the selected delivery patterns across all stores

(4) Retailers generally adopt policies of periodic inventory assessment (Cachon

(2001) [11]; Van Donselaar et al. (2010) [55]).

48

Whenever the inventory on store shelves reaches or dips below a predetermined

reorder level, an order for replenishment is initiated. The adoption of a cyclic strategy

for ordering and delivery permits regular adjustments to reorder levels. This reduction

in management oversight simplifies logistics planning in subsequent planning phases

(Schöneberg et al. (2010) [43], Hübner et al. (2013) [26]). As a consequence, the

chosen delivery patterns significantly impact efficiency within the operational

segments of an internal retail supply chain, encompassing the distribution center,

transportation, and in-store logistics. Since the intervals between orders are a product

of the applied delivery pattern, a series of volume effects arise along the supply chain,

exerting substantial influence on logistics costs (Cachon (1999) [12]). Thus, the retail

industry acknowledges the selection of delivery patterns as a vital lever to harmonize

the requirements of the distribution center, transportation, and in-store aspects. Despite

the complexity associated with constructing suitable models and tools, the majority of

retailers haven't yet adopted comprehensive approaches that span all subsystems

during the allocation of delivery patterns to stores. This underscores the need for

effective decision support mechanisms to guide retail enterprises in achieving

decisions that are either "optimal" or at the very least "nearly optimal.

Total cost of the retail distribution systems depends on routing and fleet related costs

on a great deal. Considering the role of the effective fleet sizing in profitability and

efficiency of the distribution systems, we integrated fleet dimensioning and

assignment to our model.

Moving on to the problem explored in the second section of the thesis, it revolves

around a collection of stores spread across a distinct geographical area. Here, the

demand for the stores is deterministic but exhibits seasonal trends. The fleet utilized

consists of both owned and rental heterogeneous trucks. Routing costs are

approximated through clustering, where stores are assigned to seed points.

Replenishments are conducted using suitable delivery patterns that not only fulfill the

store demands but also minimize the overall cost of transportation, delivery pattern

assignment, vehicle ownership/renting, and routing.

49

3.1.1 Motivation and related literature

In our literature survey, we mainly focused on a review of retail-specific articles that

define models for the problem of delivery pattern assignment and provide solutions to

the developed models. Sternbeck & Kuhn (2014) [48] focuses on the tactical problem

of determining delivery patterns based on which grocery stores are routinely supplied

with products from various order categories by retail-owned distribution hubs. They

aim at minimizing the costs occurring in the store and the transportation DC. The

aspect which makes our problem different from the one studied in Sternbeck & Kuhn

(2014) [48], is that we determine the fleet size and combination in two demand seasons

as well as considering the costs of owning and renting fleets. They solve the suggested

model by CPLEX and analyze the results. In general, DP planning papers incorporate

pattern-dependent costs and examine their impact on total planning. They specifically

consider how the delivery sizes each day are affected by the DPs chosen. Gaur &

Fisher (2004) [20] present a method for determining a weekly delivery schedule based

on a periodic inventory routing problem. Ronen & Goodhart (2008) [40] analyze a

similar situation that includes DC expenses as well as additional extensions such as

restricted picking capacity, a heterogeneous fleet, and daily minimum utilization rates

for DC and transportation subsystems. They assign similar stores to clusters and set

patterns for them as we do in our problem, however, it is not performed sequentially.

Furthermore, they overlook in-store operations expenditures. Sternbeck & Kuhn

(2014) [48] are the first to thoroughly study the logistical processes in DCs,

transportation, and retail, as well as their dependencies on DPs. Their binary integer

program minimizes the sum of all specified costs and is applied to a real-world

instance. A cost matrix based on distance and order size is used to estimate

transportation expenses. Actual tours are neglected. Holzapfel et al. (2016) [24]

consider DC, transportation, and in-store logistics, and provide an innovative solution

strategy that clusters stores and approximates transportation costs using Fisher &

Jaikumar (1981) [19] logic. There are some similarities between the problem studied

in Holzapfel et al. (2016) [24] and the problem we consider here. We both put

customers into clusters based on their proximity and then assign delivery patterns. In-

store costs and transportation related costs are calculated the same way. Our problem

50

is distinguishable from the one developed in Holzapfel et al. (2016) [24] in the

following aspects:

(1) We consider monthly delivery patterns while they consider weekly delivery

patterns.

(2) The vehicle fleet is heterogeneous in terms of carrying capacity, cost per

kilometer and ownership costs.

(3) Owned and rental vehicle fleet is available in both seasons.

(4) The seed point of a cluster is chosen based on the proximity of a customer to a

dummy seed.

(5) A limited number of stores can be served on daily clusters.

Here, we develop a planning concept to define repetitive delivery patterns according

to which stores of a grocery retailer are supplied from a distribution center. A delivery

pattern is a set of weekdays on which a delivery from the DC arrives to a certain store

on a regular basis during all normal weeks, i.e., weeks without public holidays, in a

planning horizon. As Kuhn & Sternbeck (2013) [31] prove, the majority of grocery

companies use such delivery patterns, which are designed considering the volume of

sales and the size of the stores.

According to Holzapfel et al. (2016) [24], using recurring and store-specific delivery

patterns has various advantages:

1) Scheduling the workers for the shelf replenishment process is significantly

easier because order replenishments arrive at a shop on the same weekdays

each week (Gaur & Fisher (2004) [20])

2) Similarly, in terms of transportation, delivery patterns allow for the creation of

basic cyclic routes during each planning period.

3) Staff deployment and shift planning can be altered at the DC based on predicted

aggregate picking volumes, which are determined by the delivery patterns

chosen across all stores.

4) Periodic inventory reviews are typically implemented by retailers. When shelf

inventory falls to or below a reorder level, a replenishment order is issued.

Using a cyclic ordering and delivery strategy allows reorder levels to be

adjusted on a frequent basis, which reduces overhead steering and simplifies

logistics planning in following planning modules.

51

As a result, the delivery patterns chosen have a significant impact on the operational

subsystems of an internal retail supply chain, such as DC, transportation, and in-store

logistics. As mentioned previously, effective vehicle fleet utilization has a significant

impact on profitability of the companies who own or plan to rent a fleet. Hence,

bringing quality solutions to strategic fleet sizing and composition problem is a critical

logistical decision. Strategic fleet sizing problem mainly focuses on optimizing the

profitability of the companies by determining the most suitable fleet size and

composition. Detailed routing problems is normally not included at a highly detailed

level in strategic fleet management problems since routing decisions are daily

operational decisions. Hence, in our study, we consider routing costs in an

approximated fashion because detailed routing decisions changes daily and routing

costs constitute relatively small percentage of the total cost.

As far as we know, literature lacks research which considers integrated delivery pattern

planning and fleet sizing as a whole. We made contribution to the literature in sense

of developing a mixed integer programming model for the integrated delivery pattern

planning and fleet sizing problem and proposing effective and novel solution

techniques for the model considered.

3.2 Problem Description And Mathematical Formulation

This section, formulates a mixed integer programming model for selecting store-

specific delivery patterns, the fleet size and composition used for replenishing stores

and transportation tour clusters to minimize the total costs of the whole retail

distribution chain. This model is extension of the model suggested Dastjerd & Ertogral

(2019) [14] Each of the stores denoted by 𝑓, 𝑓 ∈ 𝐹, is supplied from a DC considering

the different delivery pattern 𝑟, 𝑟 ∈ 𝑅. Delivery pattern defines the days of delivery in

a specific repetitive delivery period, which is, one month in our problem setting. Each

delivery pattern 𝑟 is assigned to one store 𝑓 in season s and is denoted by the binary

variable 𝑥𝑓𝑟𝑠 ∈ {0,1}. Cost of assigning a distinctive delivery pattern to a store is

illustrated by 𝑐̂𝑓𝑟𝑠 which includes ordering costs occured in stores, handling costs for

the stores and inventory holding costs of the stores in each season. We use an incidence

matrix 𝑔𝑟𝑡 to indicate whether a pattern includes a specific day or not. If day 𝑡 is

included in pattern 𝑟, the corresponding 𝑔𝑟𝑡value is 1, and otherwise it is equated to

52

zero. Here we assume that the delivery pattern of a store is repeated in all following

periods, e.g., months, till a major change occurs. The products delivered to store 𝑓 on

day 𝑡 in seaspn 𝑠 is quantified by 𝑝𝑎𝑙𝑙𝑓𝑟𝑡𝑠 and it is assumed that each day the stores

receive an amount of the products that fulfill the required demand for all articles until

next delivery day. The quantity is measured in terms of receiving pallets of goods.

Each store is considered to have a receiving capacity 𝑐𝑎𝑝𝑓
𝑟𝑒𝑐 which ensures that the

received products fit into the store capacity. Likewise, the DC is considered to have

picking capacity on each day 𝑚𝑎𝑥𝑐𝑎𝑝𝑡
𝑝𝑖𝑐𝑘

 and 𝑚𝑖𝑛𝑐𝑎𝑝𝑡
𝑝𝑖𝑐𝑘

. The picking volume for

store 𝑓 on day 𝑡 in season s is denoted by 𝑝𝑖𝑐𝑘𝑓𝑟𝑡𝑠.

Additionally, the retailer is supposed to have two types of owned vehicles which differ

in terms of capacity, cost per kilometer and ownership costs. In high demand periods

retailers are allowed to rent vehicles from a third-party company. Each store is

assigned to a delivery tour k, a vehicle type 𝑣, a pattern r, on day t and season s if

pattern r includes day t and that specific store is assigned to pattern r, 𝑥𝑓𝑘𝑟𝑡𝑣𝑠 ∈ {0,1}.

Binary variable 𝑦𝑘𝑟𝑡𝑣𝑠 indicates whether a vehicle type v is assigned to the delivery

tour k, pattern r on day t in season s.

The cost of serving a seed point and the additional costs occurring when a truck of type

v assigned to a delivery tour 𝑘 adds store f to its tour are distinguished by 𝑐𝑘𝑣
𝑡𝑟𝑒𝑛𝑠𝑡𝑜𝑢𝑟

and 𝑐𝑘𝑣
𝑡𝑟𝑎𝑛𝑠𝑠𝑡𝑜𝑝

, respectively. Any point in the distribution area can serve as a seed

point. Here, in this study, we used a combination of k-means clustering method and a

version of the technique suggested by Savelsbergh (1990) [41]. The transportation and

routing costs are approximated by the same logic as the one presented in Fisher &

Jaikumar (1981) [19].

Some assumptions we made in model development are as follows:

• Stores receive deliveries a maximum of once per day.

• Each store gets replenished by a store-specific monthly delivery pattern.

• The monthly delivery pattern repeats all months of the entire planning horizon,

e.g., one year.

• Store delivery lead times are deterministic and predetermined.

• The product range is homogeneous in the sense of products that can be

packaged together on a common pallet or roll cage.

53

• The transportation fleet is heterogeneous and unlimited.

• There are owned and rental fleets available for different demand seasons.

• Each truck can carry out a maximum of one delivery tour per day.

• The capacity for receiving goods at a store is limited and implies limited

storage space in the backroom.

• The workload at the DC is restricted between a minimum and maximum level.

• Each truck can visit a limited number of stores in a single tour on a single day

of each delivery pattern.

The notations used and the mathematical model is presented below:

Sets:

𝐹: Stores, 𝐹 = {1,2, … , 𝑓, … , |𝐹|} and 𝑓 = 0 symbolizing the DC.

𝐾: Clusters, tours, 𝐾 = {1,2, … , 𝑘, . . |𝐾|}; |𝐾| quantifies the number of tours

𝑅: Delivery patterns, 𝑅 = {1,2, … , 𝑟, … , |𝑅|}

𝑇: Days, 𝑇 = {1,2, … , 𝑡, … , |𝑇|}, |𝑇| quantifies the length of one delivery cycle

𝑉: Vehicles, 𝑉 = {1,2, … , 𝑣, … , |𝑉|}

S: Seasons, S= {1,2, … , |𝑆|}, 𝑠 = 1 and 𝑠 = 2 represent low and high seasons, respectively

Parameters:

𝐶𝑓𝑟𝑠
̂ : Costs at the subsystems DC and store, independent of tour setting, applying

pattern 𝑟 for store 𝑓 in season 𝑠.

𝐶𝑘𝑣
𝑡𝑟𝑎𝑛𝑠𝑡𝑜𝑢𝑟: Transportation costs supplying cluster 𝑘 with vehicle v

𝐶𝑓𝑘𝑣
𝑡𝑟𝑎𝑛𝑠𝑠𝑡𝑜𝑝

: Stoppage costs for cluster 𝑘 with vehicle 𝑣

𝐶𝑣
𝑜𝑤𝑛𝑒𝑟𝑠ℎ𝑖𝑝

: Ownership cost of vehicle 𝑣

𝐶𝑣
𝑟𝑒𝑛𝑡𝑎𝑙: Renting cost of vehicle 𝑣

54

𝐶𝑎𝑝𝑓
𝑟𝑒𝑐: Receiving capacity of store 𝑓

𝐶𝑎𝑝𝑣
𝑠𝑡𝑜𝑟𝑒: Number of stores that can be visited on a single delivery tour by vehicle 𝑣

𝐶𝑎𝑝𝑣
𝑡𝑟𝑎𝑛𝑠: Truck 𝑣 capacity

𝑔𝑟𝑡: Binary parameter; 1 if a delivery on day 𝑡 takes applying pattern 𝑟; otherwise 0

𝑚𝑎𝑥𝐶𝑎𝑝𝑡
𝑝𝑖𝑐𝑘

: Maximum picking capacity to be used at DC on day 𝑡

𝑚𝑖𝑛𝐶𝑎𝑝𝑡
𝑝𝑖𝑐𝑘

: Minimum picking capacity to be used at DC on day 𝑡

𝑝𝑎𝑙𝑙𝑓𝑟𝑡𝑠: Pallets delivered on day 𝑡 to store 𝑓 applying pattern 𝑟 in season s

𝑝𝑖𝑐𝑘𝑓𝑟𝑡𝑠: Picking effort at DC on day 𝑡 for store 𝑓 applying pattern 𝑟 in season 𝑠

Decision Variables:

𝑥𝑓𝑟𝑠: Binary variable; 1 if pattern 𝑟 is assigned to store 𝑓in season 𝑠; otherwise 0

𝑥𝑓𝑘𝑟𝑡𝑣𝑠: Binary variable; 1 if pattern 𝑟 is assigned to store 𝑓 and store 𝑓 is assigned to

cluster 𝑘 and vehicle 𝑣 on day 𝑡 in season 𝑠; otherwise 0

𝑦𝑘𝑡𝑣𝑠: Total number of the vehicles of 𝑣 assigned to cluster 𝑘 on day 𝑡 in season 𝑠

𝑁𝑣𝑠: Total number of assigned rented vehicle 𝑣 in season 𝑠

𝑂𝑣: Total number of assigned owned vehicle 𝑣

Mathematical Formulation:

𝑇𝐶𝑠=∑ ∑ ∑ 𝐶𝑓𝑟̂𝑥𝑓𝑟𝑠𝑠∈𝑆𝑟∈𝑅𝑓∈𝐹 + ∑ ∑ ∑ ∑ 𝐶𝑘𝑣
𝑡𝑟𝑎𝑛𝑠𝑡𝑜𝑢𝑟𝑦𝑘𝑡𝑣𝑠𝑠∈𝑆𝑣∈𝑉 +𝑡∈𝑇𝑘∈𝐾

∑ ∑ ∑ ∑ ∑ ∑ 𝐶𝑓𝑘𝑣
𝑡𝑟𝑎𝑛𝑠𝑠𝑡𝑜𝑝

𝑥𝑓𝑘𝑟𝑡𝑣𝑠𝑠∈𝑆𝑣∈𝑉𝑡∈𝑇𝑟∈𝑅𝑘∈𝐾𝑓∈𝐹 + ∑ ∑ 𝐶𝑣
𝑟𝑒𝑛𝑡𝑎𝑙𝑁𝑣𝑠𝑠∈𝑆𝑣∈𝑉

Min TC = ∑ 𝛼𝑠𝑇𝐶𝑠𝑠∈𝑆 +∑ 𝐶𝑣
𝑜𝑤𝑛𝑒𝑟𝑠ℎ𝑖𝑝

𝑂𝑣𝑣∈𝑉

3.1

55

Subject to:

∑ 𝑥𝑓𝑟𝑠𝑟∈𝑅 = 1 ∀𝑓 ∈ 𝐹, ∀𝑠 ∈ 𝑆 3.2

∑ ∑ 𝑥𝑓𝑘𝑟𝑡𝑣𝑠 = 𝑘∈𝐾 𝑔𝑟𝑡𝑣∈𝑉 𝑥𝑓𝑟𝑠 ∀ 𝑓 ∈ 𝐹, 𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 3.3

𝑚𝑖𝑛𝐶𝑎𝑝𝑡
𝑝𝑖𝑐𝑘

≤ ∑ ∑ 𝑝𝑖𝑐𝑘𝑓𝑟𝑡𝑠𝑟∈𝑅𝑓∈𝐹 𝑥𝑓𝑟𝑠 ≤ 𝑚𝑎𝑥𝐶𝑎𝑝𝑡
𝑝𝑖𝑐𝑘

 ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 3.4

∑ 𝑝𝑎𝑙𝑙𝑓𝑟𝑡𝑠𝑥𝑓𝑟𝑠 ≤ 𝐶𝑎𝑝𝑓
𝑟𝑒𝑐 𝑟∈𝑅 ∀ 𝑓 ∈ 𝐹, 𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 3.5

∑ ∑ 𝑝𝑎𝑙𝑙𝑓𝑟𝑡𝑠𝑟∈𝑅𝑓∈𝐹 𝑥𝑓𝑘𝑟𝑡𝑣𝑠 ≤ 𝐶𝑎𝑝𝑣
𝑡𝑟𝑎𝑛𝑠𝑦𝑘𝑡𝑣𝑠 ∀ 𝑣 ∈ 𝑉, 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 3.6

∑ 𝑦𝑘𝑡𝑣𝑠𝑘∈𝐾 ≤ 𝑂𝑣 ∀ 𝑣 ∈ 𝑉\{|𝑉|}, 𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 3.7

∑ 𝑦𝑘𝑡𝑣𝑠𝑘∈𝐾 ≤ 𝑁𝑣𝑠 ∀ 𝑣 = |𝑉|, 𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 3.8

∑ ∑ 𝑔𝑟𝑡𝑥𝑓𝑘𝑟𝑡𝑣𝑠𝑓∈𝐹𝑟∈𝑅 ≤ 𝐶𝑎𝑝𝑣
𝑠𝑡𝑜𝑟𝑒 ∀ 𝑣 ∈ 𝑉, 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 3.9

𝑥𝑓𝑟𝑠 ∈ {0,1} ∀ 𝑓 ∈ 𝐹, 𝑟 ∈ 𝑅, ∀𝑠 ∈ 𝑆 3.10

𝑥𝑓𝑘𝑟𝑡𝑣𝑠 ∈ {0,1} ∀ 𝑓 ∈ 𝐹, 𝑟 ∈ 𝑅, 𝑣 ∈ 𝑉,

𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇, ∀∈ 𝑆

3.11

𝑦𝑘𝑡𝑣𝑠 ∈∈ {0,1} ∀ 𝑣 ∈ 𝑉, 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 3.12

𝑁𝑣𝑠 ∈ 𝑍≥0 ∀ 𝑣 ∈ 𝑉, ∀𝑠 ∈ 𝑆 3.13

𝑂𝑣 ∈ 𝑍≥0 ∀ 𝑣 ∈ 𝑉 3.14

Our objective aims at minimizing the total annual costs caused by delivery pattern

assignment, serving stores, adding stores to delivery tours, using owned and rented

vehicle fleets. With the first constraint (3.2) we assure that in each of the two seasons

only one delivery pattern is assigned to each of the stores. In second constraint (3.3),

we assign a store to a vehicle and delivery tour with pattern 𝑟 on day t in season 𝑠 if

and only if that store is assigned to pattern r and the day t is included in pattern r in

that season. Constraint number (3.4) is used to assure that the picking effort at DC for

56

each day is between its maximum and minimum picking capacity. Store receiving

capacity is considered in constraint number (3.5). Constraint (3.6) restricts that the

number of pallets transported by vehicle 𝑣 on a delivery tour 𝑘 on day 𝑡 in season 𝑠

must be less than or equal to the vehicle’s capacity. By constraints (3.7) and (3.8) we

calculate the total number of owned and rented vehicles which are used to perform the

delivery operations. Due to time, distance and limited vehicle capacities each vehicle

can serve a limited number of stores in a tour on a specific delivery day. We assured

this by adding constraint (3.9) to our model. Constraints (3.10)-(3.14) gives the domain

for the decision variables.

3.3 Complexity Analysis Of The Problem

In this section we show that the problem tackled in here is a NP-Hard problem through

polynomial time reduction from the “One- dimensional bin packing problem” which

is proved to be strongly NP hard in E. G. Coffman et al. (1997). In the bin packing

problem, objects of different volumes must be packed into a finite number of bins or

containers each of volume V in a way that minimizes the number of bins used.

Considering our problem, under some assumptions we can transform the current

problem to bin packing problem in pseudo-polynomial time:

• A single season

• Single type owned vehicles

• single delivery tour/seed point

• single delivery pattern containing a single delivery day

• 𝐶𝑘𝑣
𝑡𝑟𝑎𝑛𝑠𝑡𝑜𝑢𝑟 = 1

• 𝐶𝑓𝑟̂ = 𝐶𝑓𝑘𝑣
𝑡𝑟𝑎𝑛𝑠𝑠𝑡𝑜𝑝

= 𝐶𝑣
𝑜𝑤𝑛𝑒𝑟𝑠ℎ𝑖𝑝

= 0

• 𝐶𝑣
𝑟𝑒𝑛𝑡𝑎𝑙= ∞

Under these assumptions our problem turns into a one-dimensional bin packing

problem, where we try to minimize the number of vehicles.

3.4 Solution Techniques

As solution method, we implemented three different versions of Fix and optimize

heuristic with an additional improvement step. The Fix and Optimize heuristic is a

two-phase approach which works by dividing a problem into smaller subproblems that

57

are solved repeatedly. In the first phase, we break the problem down into

subproblems/subgroups of variables and then solve it by setting variables in only one

subproblem as integers, and taking the remaining variables as either fixed to the values

found in the previous iterations or as linear variables. The solution for binary variables

found in an iteration is fixed and used in the next one. This procedure is repeated until

all variable values are found. The exact steps of first phase are given below.

FO heuristic –Phase I

1. Divide the customers into P sub groups with equal number of customers, or as

equal as possible. Divide the decision variables in to 𝑃 sub groups

corresponding to 𝑃 customer groups. Let 𝐴𝑖 be the set of binary variables in ith

sub group.

2. Set the iteration counter 𝑖 to 1.

3. If 𝑖 > 1, Fix the binary variables in 𝐴𝑗 to the values of variables in iteration

𝑖 − 1 for 𝑗 = 1. . 𝑖 − 1.

4. Set the variables in 𝐴𝑖 as binary variables.

5. Relax the binary variables in 𝐴𝑗 for 𝑗 = 𝑖 + 1. . 𝑃 as linear variables.

6. Solve the complete model

7. Set 𝑖 = 𝑖 + 1. If 𝑖 <= 𝑃 go to step 3. If 𝑖 > 𝑃, STOP.

The second phase aims at bringing improvement to the solution of the first phase. At

each iteration, we set variables of one subproblem as binaries and reoptimize them

while we keep all other variables fixed to the solution found in the previous iteration.

If there is any improvement in the solution, the results are saved and procedure is

continued till all the subproblems are checked. The steps for the second phase are given

below.

FO heuristic –Phase II

1. Take the solution from Phase I as the current solution.

2. Set the iteration counter i to 1.

58

3. If 𝑖 = 1 Fix the values of variables in 𝐴𝑗 for 𝑗 = 𝑖 + 1. . . 𝑃 to the values found

in the current solution.

4. If 𝑖 > 1 Fix the values of variables in 𝐴𝑗 for 𝑗 = 1. . . 𝑖 − 1 and 𝑗 = 𝑖 + 1. . 𝑃 to

the values found in iteration 𝑖 − 1

5. Define the variables in 𝐴𝑖 as binary variables. (Note that all other variables in

other subgroups are fixed)

6. Solve the complete model and set 𝑖 = 𝑖 + 1.

7. Check the objective value, if the objective value is better than best solution so

far and 𝑖 < 𝑃, update the best solution as the current solution (improved

solution) and go to step 4. If no improvement occurred in the current iteration

and 𝑖 < 𝑃 go to step 4. If no improvement occurred in the current iteration

and 𝑖 > 𝑃 STOP and RETURN the solution.

Fix and Optimize versions proposed here differ in terms of subproblem generation

criterion:

1. Store based subproblems

2. Delivery day based subproblems

3. Cluster based subproblems

3.4.1 Store based subproblems

As it is apparent from the title, each sub group contains a fixed number of stores and

the variables for one of those groups is defined as binaries and other groups are left as

LPs. The solution of each iteration is fixed for the binary part and the iterations

continue till all the variables are set to binaries or integers. The steps for the second

step are the same as the ones described in previous reports.

3.4.2 Delivery day based subproblems

In delivery day based subproblem generation, we divide problem based on planning

period. At each iteration, we define variables for a set of a number of 𝑡 values

(depending on the appropriate size of subproblems) as IPs and relax variables in other

subproblems. In FO, the matter is always about the trade-off between solution quality

and solution time reduction. That is, when choosing larger sized subproblems, the

59

higher number of IP variables produce a better solution in terms of deviation from

optimal/best bounds but may cause solution durations to increase significantly. On the

other hand, smaller sized subproblems, may produce a worse solution in much more

shorter time due the higher number of relaxed variables. So, subproblem size

determination is a key decision in these types of heuristics.

3.4.3 Cluster based subproblems

In this version, we generated a new index set for the customers based on the ones that

are served on the same delivery tour or are assigned to the same seed point. In

preprocessing step for model solution, we used K-means algorithm for finding seed

points and developed a model for assigning customer to their nearest seeds. Thus,

when customers of the same delivery tour are taken as a subproblem in fact the

customers which are nearest to each other are put into the same subproblem. FO,

divides the main problem into smaller subproblems for one of which the variables are

defined as binaries and for the others as linearly relaxed ones.

Stores are assigned to a seed point/cluster in preprocessing step by using a k-means

clustering algorithm and a mathematical model. Then, the indices for the stores which

are assigned to the same cluster are stored and passed to the FO for being used in

subproblem generation. In this version of FO, we put the customers of same clusters

in the same subproblem and apply FO steps. The logic behind this division criteria is

that the customers are assigned to the seeds/clusters which are closest to them in terms

of distances. In our main model, we aim at minimizing total annual costs where one of

the cost components is the cost of transportation that considers distances from stores

to seed points and from stores to other stores. When stores in the same cluster are put

into the same subproblem, the distance is automatically minimized hence the solution

quality increases.

3.5 Improvement Algorithm

We introduce a two-phase enhancement algorithm aimed at further refining the

outcomes achieved through the FO approach. Upon dissecting the characteristics of

the solutions produced by FO, it becomes apparent that the notable deviations from

best-bound values primarily stem from the excessive utilization of vehicles. Given that

60

vehicle ownership costs constitute a predominant expense in our context, the addition

of an extra vehicle compared to the optimal solution significantly impacts the objective

function's value. The detailed procedure during the steps of the improvement algorithm

is described in the following subsections.

3.5.1 Improvement algorithm phase I

The enhancement algorithm concentrates on the optimization of fleet composition and

size. In the initial phase, we meticulously investigate solutions in which each vehicle

type in the FO-derived solution is systematically augmented and reduced by one unit,

while keeping the quantities of other vehicles constant.

In the first phase of the algorithm, after fixing all the variables to integer values by fix

and optimize implementation, the final vehicle fleet composition is saved in an array

𝑉 as values for 𝑥. Next, one large vehicle is added to the fleet and the total number of

large vehicles is used as an upper bound for large vehicle assignment (the new vehicle

set is called 𝑉′). If the objective value for large vehicle addition, 𝐶𝑜𝑠𝑡′ is smaller than

the value from the FO, 𝐶𝑜𝑠𝑡, we add another large vehicle to the fleet and update the

objective function value. The process goes on in this fashion until there is no

improvement in the total cost. On the other hand, if no improvements occur, the

algorithm moves to the next step. That is, one large vehicle is excluded from the fixed

vehicles set taken from FO. This operation goes on again until there is no improvement

in the total cost. The next move is to add a small vehicle to the fleet and repeat it until

stops improving the objective. The last step of first improvement phase is to exclude

one small vehicle from the fleet and reapply FO to improve the objective function

value as much as possible.

3.5.2 Improvement algorithm phase II

In the second phase of the improvement approach, we defined two neighborhoods for

the existing solution: exclude one large vehicle and add a small vehicle instead and

remove two small vehicles and add a large vehicle to the fleet. The revised vehicle set

𝑉′′ is used as upper bound for vehicle assignment constraint. FO is applied to the

problem using defined neighbors. If the solution from second step, 𝐶𝑜𝑠𝑡′′ is better than

the one from the first step, 𝐶𝑜𝑠𝑡′, the solution is updated and first phase is re-started

61

using new vehicle composition. If not, algorithm stops and reports the solution for the

problem.

The flowchart for improvement algorithm steps is given in Figure 3.1.

Take Cost and V

from FO

Generate neighbor

V

Apply FO get Cost

Cost Cost
Cost = Cost

V = V

Generate neighbor

V

Apply FO and get

Cost

Cost Cost

Stop and save the

results

Cost = Cost

V = V

Yes

No

Yes

No

Figure 3.1: Steps for improvement algorithm.

3.6 Numerical Analysis

For solving the MIP, we need to pre-calculate some parameters at first. That is, the

location of seeds should be known in order to calculate the transportation and tour

generation costs. In the following subsections, we describe the process to seed

generation, transportation cost calculation and also explain the dataset generation

method.

62

3.6.1 Seed point generation

Number of clusters, |𝐾|, is needed as an input for the model. Number of clusters is

equal to the maximum number of feasible delivery tours per day and the number of the

available trucks for seed point generation. We approximated this number by dividing

the number of stores by the maximum possible number of stores which can be visited

in a single tour/cluster and multiplied the results with seasonal increase parameter 1.5;

that is, for example for 𝑓 = 20 we have 𝑘 = ⌈20/6⌉ ∗ 1.5 = 6. Rounding up this

quantity to the next integer value results in the number of trucks that are necessary to

ensure that all stores can receive their required products on all days of the delivery

cycle. This approximation generates a reasonable number of trucks and reasonable

delivery cluster sizes. In the unlikely case that the number of trucks approximated does

not lead to a feasible solution, the number is increased by one until a feasible solution

can be generated. As a result, we have 6, 9, 12 and 18 seed points/clusters for 20, 30,

40 and 60 stores, respectively.

After approximating the number of possible seeds and trucks, we use the following

algorithm in order to determine the exact seed locations and generate delivery tours:

(1) Defines the initial locations of seed points for all clusters k. There are many

different ways to generate initial seeds, here we used the points which are

randomly distributed along the delivery area. Random coordinates are

generated using MATLAB and then feed into JAVA for the rest of the

procedure. Distance between seed points, represented by 𝑐𝑟𝑑𝑆𝑃𝑘
𝑥(𝑙)

 and

𝑐𝑟𝑑𝑆𝑃𝑘
𝑥(𝑙)

, and the store coordinates, given by 𝑐𝑟𝑑𝑆𝑡𝑓
𝑥 and 𝑐𝑟𝑑𝑆𝑡𝑓

𝑦
 is

calculated using a Euclidean metric. The iteration index is denoted by 𝑙.

(2) Step 2 entails assigning clusters and determining the location of seed points

(2.1) An MIP is used to minimize the travel distances TD between seed

points and their associated stores by assigning store 𝑓 to cluster 𝑘,

expressed by 𝑧𝑓,𝑘 ∈ {0,1} (Table 3.1 presents the notations for the MIP).

Each store is assigned exactly to one cluster (see (2)). Constraint (3)

ensures that the volume to be delivered to all stores assigned to a specific

cluster- assuming daily deliveries- must be equal or less than the truck

capacity, 𝑐𝑎𝑝𝑡𝑟𝑎𝑛𝑠,on each day of the delivery cycle. This guarantees that

63

all of the stores in a certain cluster can potentially be supplied on one single

tour each day.

Table 3.1: Notations used in cluster generation model.

Parameters

𝑣𝑜𝑙𝑓,𝑡 Demand volume at store 𝑓 on day 𝑡, measured in

pallets

𝑐𝑟𝑑𝑆𝑡𝑓
𝑥, 𝑐𝑟𝑑𝑆𝑡𝑓

𝑦
 𝑥 and 𝑦 coordinates of store f

Decision and auxiliary

variables

𝑐𝑓,𝑘
𝑑𝑖𝑠𝑡 Distance between store f and the seed point of

cluster k

𝑐𝑟𝑑𝑆𝑃𝑘
𝑥, 𝑐𝑟𝑑𝑆𝑃𝑘

𝑦
 x and y coordinates if the seed point of cluster k

𝑧𝑓,𝑘 Binary variable; 1 if store f is assigned to cluster k;

otherwise, 0

𝑀𝑖𝑛 𝑇𝐷𝑙 = ∑ ∑ 𝑐𝑓,𝑘
𝑑𝑖𝑠𝑡(𝑙)

. 𝑧𝑓,𝑘𝑘∈𝐾𝑓∈𝐹 (3.15)

s.t.

∑ 𝑧𝑓,𝑘 = 1𝑘∈𝐾 ∀𝑓 ∈ 𝐹 (3.16)

∑ 𝑣𝑜𝑙𝑓,𝑡. 𝑧𝑓,𝑘 ≤ 𝑐𝑎𝑝𝑡𝑟𝑎𝑛𝑠
𝑓∈𝐹 ∀𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇 (3.17)

𝑧𝑓,𝑘 ∈ {0,1} ∀𝑓 ∈ 𝐹, 𝑘 ∈ 𝐾 (3.18)

64

 (2.2) If 𝑇𝐷(𝑙) is not equal to the previous iteration 𝑇𝐷(𝑙−1) or at least there is a

difference greater than a small number 𝜖 between them, we update the seed point

coordinates for the iteration 𝑙 + 1 as follows:

𝑐𝑟𝑑𝑆𝑃𝑘
𝑥(𝑙+1)

= ∑ 𝑐𝑟𝑑𝑆𝑇𝑓
𝑥

𝑓∈𝐹 . 𝑧𝑓,𝑘
(𝑙) ∑ 𝑧𝑓,𝑘

(𝑙)
𝑓∈𝐹⁄

𝑐𝑟𝑑𝑆𝑃𝑘
𝑦(𝑙+1)

= ∑ 𝑐𝑟𝑑𝑆𝑇𝑓
𝑦

𝑓∈𝐹 . 𝑧𝑓,𝑘
(𝑙) ∑ 𝑧𝑓,𝑘

(𝑙)
𝑓∈𝐹⁄

That is, the coordinates of the seeds in iteration 𝑙 + 1 is set to the mean of the

coordinates of the stores assigned within the previous iteration. Then the value of

𝑐𝑓,𝑘
𝑑𝑖𝑠𝑡(𝑙+1)

 is updated and this procedure continues until there is no further

improvement. The steps for k-means algorithm are described below:

(1) Initialize seed points and distances

 Set 𝑙 = 1 and 𝑇𝐷(0) = 0

 Initialize 𝑐𝑟𝑑𝑆𝑃𝑘
𝑥(𝑙)

 and 𝑐𝑟𝑑𝑆𝑃𝑘
𝑦(𝑙)

 ∀𝑘 ∈ 𝐾

 Calculate 𝑐𝑓,𝑘
𝑑𝑖𝑠𝑡(𝑙)

 ∀𝑓 ∈ 𝐹, 𝑘 ∈ 𝐾

(2) Iteration

 (2.1) Assign stores to the clusters by solving the MIP according to

(3.15)- (3.18)

 (2.2) Check objective value and update location of seed point if necessary

 If |𝑇𝐷(𝑙) − 𝑇𝐷(𝑙−1)| > 𝜖 then

 Set 𝑙 = 𝑙 + 1, calculate 𝑐𝑟𝑑𝑆𝑃𝑘
𝑥(𝑙)

 and 𝑐𝑟𝑑𝑆𝑃𝑘
𝑦(𝑙)

 ∀𝑘 ∈ 𝐾 and 𝑐𝑓,𝑘
𝑑𝑖𝑠𝑡(𝑙)

∀𝑓 ∈ 𝐹, 𝑘 ∈ 𝐾

 Continue with (2.1)

Else stop iteration

65

The process yields the location of the seed points for each cluster 𝑘, as well as an

exhaustive and disjunctive assignment of all stores f to a single cluster 𝑘. The

calculation of the transportation cost parameters 𝑐𝑘𝑣
𝑡𝑟𝑎𝑛𝑠𝑡𝑜𝑢𝑟 and 𝑐𝑓𝑘𝑣

𝑡𝑟𝑎𝑛𝑠𝑡𝑜𝑝
 is based on

this assignment.

3.6.2 Transportation and routing cost calculation

The calculation of 𝑐𝑘𝑣
𝑡𝑟𝑎𝑛𝑠𝑡𝑜𝑢𝑟 and 𝑐𝑓𝑘𝑣

𝑡𝑟𝑎𝑛𝑠𝑡𝑜𝑝
 is performed based on the method

suggested in Holzapfel et al. (2016) [24]. They apply the logic of Fisher & Jaikumar

(1981) [19] and approximate the real tour costs on a tactical level.

Figure 3.2 illustrates the determination of the two transportation cost parameters for a

certain assignment on the basis of distance- dependent transportation costs. For

example, there are two possibilities for supplying store 4 from the DC, i.e., f = 0: either

on a tour based on the cluster with the seed point A or on a cluster with the seed point

B (A, B ∈ K). The calculation example shows that assigning store 4 to cluster A results

in lower costs than assigning it to cluster B. Supplying store 4 as part of the tour of

cluster B, however, can be advantageous, if for example stores 1, 2 and 3 are not

supplied on certain days, but stores 5 and 6 are. Then it is favorable to include store 4

on a tour with seed point B and not to start a new tour with seed point A on this day.

In our dataset we took cost per kilometer as 7,8.5 and 10 for small owned, large owned

and rental vehicle, respectively. Ownership and rental cost are taken as 70,85 and 100.

In terms of carrying capacity, we assumed that small trucks are capable of carrying

average monthly demand of the stores with a tolerance of 30 pallets. Hence, the

capacities are 110,160 and 160 pallets, respectively.

𝑐𝐴
𝑡𝑟𝑎𝑛𝑠𝑡𝑜𝑢𝑟 = 2. 𝑐0𝐴 = 2.6 = 12

𝑐𝐵
𝑡𝑟𝑎𝑛𝑠𝑡𝑜𝑢𝑟 = 2. 𝑐0𝐵 = 2.4 = 8

𝑐4𝐴
𝑡𝑟𝑎𝑛𝑠𝑡𝑜𝑝 = 𝑐04 + 𝑐4𝐴 − 𝑐0𝐴 = 6 + 2 − 7 = 1

𝑐4𝐵
𝑡𝑟𝑎𝑛𝑠𝑡𝑜𝑝 = 𝑐04 + 𝑐4𝐵 − 𝑐0𝐵 = 6 + 12 − 4 = 14

66

Figure 3.2: Example of calculating cost parameters 𝒄𝒌𝒗
𝒕𝒓𝒂𝒏𝒔𝒕𝒐𝒖𝒓 and 𝒄𝒇𝒌𝒗

𝒕𝒓𝒂𝒏𝒔𝒔𝒕𝒐𝒑
.

 2 12

7

6

 4

3.6.3 Dataset generation

We defined 8 general scenarios based on the combination of two different sizes of

delivery areas, i.e., “District” (200 kilometer ×200 kilometer) and “State” (400

kilometer × 400 kilometer), three different store quantities located in these areas, i.e.,

|𝐹| = 20, 30, 40,60; and one delivery pattern sizes i.e., |𝑅| = 46. According to Kuhn

& Sternbeck (2013) [31], several managers mentioned that they prefer order patterns

with equidistant intervals between the deliveries. Hence, we designed our delivery

patterns in a way that the interval between two consecutive replenishments is as equal

as possible. Scenarios and their corresponding IDs are illustrated below in Table 3.2.

2

3

Store

Seed point

4

5 A

1 B

6

DC

0

0

0

67

Table 3.2: Scenario IDs.

Scenarios Number of stores Area size Number of patterns

1 20 200*200 46

2 20 400*400 46

3 30 200*200 46

4 30 400*400 46

5 40 200*200 46

6 40 400*400 46

7 60 200*200 46

8 60 400*400 46

Daily demand for each of the corresponding store sizes was generated randomly in the

range [1,10]. In our case, we have 4 months of low and 8 months of high demand

seasons in a typical delivery year. The daily store demands in high season periods are

assumed to be 1.5 times the daily demand quantities during the low season periods.

Delivery patterns are taken as four weeks of one month which will be repeated during

a year without any change. For further illustration, a part of the patterns is expressed

in Table 3.3.

Table 3.3: Part of days for delivery pattern of size |𝑹| = 𝟒𝟔.

M T W T F S M T W T F S M T W T F S M T W T F S

1 X 0 0 0 0 0 X 0 0 0 0 0 X 0 0 0 0 0 X 0 0 0 0 0

2 0 X 0 0 0 0 0 X 0 0 0 0 0 X 0 0 0 0 0 X 0 0 0 0

3 0 0 X 0 0 0 0 0 X 0 0 0 0 0 X 0 0 0 0 0 X 0 0 0

4 0 0 0 X 0 0 0 0 0 X 0 0 0 0 0 X 0 0 0 0 0 X 0 0

5 0 0 0 0 X 0 0 0 0 0 X 0 0 0 0 0 X 0 0 0 0 0 X 0

6 0 0 0 0 0 X 0 0 0 0 0 X 0 0 0 0 0 X 0 0 0 0 0 X

7 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0

68

8 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X 0 X

9 X 0 0 X 0 0 X 0 0 X 0 0 X 0 0 X 0 0 X 0 0 X 0 0

10 0 X 0 0 X 0 0 X 0 0 X 0 0 X 0 0 X 0 0 X 0 0 X 0

11 0 0 X 0 0 X 0 0 X 0 0 X 0 0 X 0 0 X 0 0 X 0 0 X

12 X 0 0 0 0 0 0 0 0 0 0 0 X 0 0 0 0 0 0 0 0 0 0 0

13 0 X 0 0 0 0 0 0 0 0 0 0 0 X 0 0 0 0 0 0 0 0 0 0

14 0 0 X 0 0 0 0 0 0 0 0 0 0 0 X 0 0 0 0 0 0 0 0 0

15 0 0 0 X 0 0 0 0 0 0 0 0 0 0 0 X 0 0 0 0 0 0 0 0

16 0 0 0 0 X 0 0 0 0 0 0 0 0 0 0 0 X 0 0 0 0 0 0 0

17 0 0 0 0 0 X 0 0 0 0 0 0 0 0 0 0 0 X 0 0 0 0 0 0

18 X 0 0 0 0 X 0 0 0 0 0 0 X 0 0 0 0 X 0 0 0 0 0 0

19 X

Cost parameters were generated based on the percentage chart presented in Van Zelst

et al. (2009) [56]. It is proved that, the operational logistical costs in the retail supply

chain for non-perishable goods follows the trend given in Figure 3.3.

Figure 3.3: operational logistical costs in the retail supply chain for non-perishable

goods.

Considering Figure 3.3, related cost parameters are presented in Table 3.4:

Transportation
, 22%

Handling in
warehouse,

28%
Inventory in

store, 7%

Handling in
store, 38%

inventory in
warehouse, 5%

OPERATIONAL LOGISTICAL COSTS

69

Table 3.4:Operational costs of stores.

Operational Costs at

Stores

Value

Handling 50

Ordering 140

Inventory holding 20

Receiving capacities for each of the stores is equal to the highest delivery volume

among all of the different delivery patterns. Maximum picking capacity at DC is

approximated with the total picking effort assuming all outlets are supplied daily with

their average daily demand volume in high season periods. Minimum picking capacity

is taken as 10% of the maximum picking effort.

3.7 Numerical Results

In this section, we analyze the results from CPLEX and investigate the performance

of the suggested heuristic versions.

3.7.1 CPLEX results

Results from CPLEX are represented in Table 3.5. In the first row of the table, V1 and

V2 represent the total number of small and large owned vehicles used in both seasons.

R1 and R2 show the number of vehicles that were rented for low and high demand

seasons. All of the problems are solved under a time limit of 10800 seconds. None of

the problems were solved to optimality and the average deviation percentage from

optimal objective function value is equal to 2.72% . As it is seen from Table 3.5, the

gaps from optimal solution increase with the increase in area size and store numbers.

Combination of vehicle fleet changes with the problem size, as well. Generally,

smaller trucks are preferred for carrying out the distribution operations. As the number

of stores increase, we observe that the total number of used vehicles increase. This

pattern is specially noticed in high demand seasons. The fact behind this increase is

that the size of the batches to be carried grow as the number of stores increase and the

carrying capacity limitation necessitates assigning more vehicles for satisfying the

needs of stores.

70

Table 3.5: CPLEX results.

CPLEX

Best

Bounds

Gap V1 V2 R1 R2 CPU (s)

1 1.75E+08 0.60% 2 0 0 0 10814.57

2 1.93E+08 3.75% 3 0 0 0 10825.89

3 2.76E+08 1.56% 4 1 0 0 10844.58

4 2.98E+08 2.22% 5 1 0 0 10830.77

5 3.97E+08 2.03% 7 1 1 1 10856.71

6 4.42E+08 4.33% 6 2 1 1 10852.25

7 6.20E+08 2.73% 7 3 1 1 10896.24

8 6.96E+08 4.51% 7 3 1 0 10894.39

3.7.2 Results for FO

In this section we discuss the results from three different types of the FO heuristic and

the additional improvement step we applied to the existing problem settings. Results

are classified and investigated under 3 categories: percentage deviations from best

bounds of the CPLEX, computational times and fleet composition.

Gaps from best bounds for FO-I, FO-II and FO-III are presented in Table 3.6. FO-I, is

the fix and optimize version in which the subproblems are generated based on stores.

Main problem is divided to subproblems each containing five stores and the FO

procedure is implemented. Objective function values for this version of the FO are at

most 3.41% away from the best bounds obtained from CPLEX which means that the

results may be closer to the optimal value.

FO-II and FO-III, show the same performance as well, the gaps from best bounds for

FO-II is at most 0.94% and for the FO-III it is 4.53%. FO-II is the version in which the

subproblems are generated based on delivery days. The fixation manner for delivery

days influences the objective function value the most. It influences inventory,

transportation and fleet ownership/rental costs. It is obvious that FO-II makes better

decisions in terms of delivery days which leads into lower difference between best

bounds and FO-II solutions.

71

In FO-III the stores on the same delivery tour are put in the same subproblem. The

rationale behind this division type is that the customers are assigned to the clusters

based on their proximity. Hence, the distance minimization is done in a much more

effective manner in this type of subproblem division. On the other hand, the obligation

for serving some specific stores all together in a single delivery tour limits the fleet

and pattern assignments. Truck capacities are fixed and limited, since patterns and

delivery days are selected in a way that trucks can carry demands of the all stores in a

single tour. As we stated, each delivery tour is served using a single truck on a specific

day. To be more illustrative, take the example of problem number 2. Gap for FO-II is

0.87% while gaps for FO-III is equal to 4.53%. Comparing the detailed solution values

for these to heuristic versions, it is spotted that the delivery day based division utilizes

fewer daily patterns than the cluster based division. This detail proves the fact that

carrying all the demands for all the stores on the same delivery tour in a specific day

forces the model to use smaller batch sizes and more frequent deliveries. This results

in the growth of the transportation costs. Comparing the transportation cost

components for FO-II and FO-III, which are equal to 4.00E+07 and 5.21E+07,

respectively, confirms the difference in pattern selection manner for these methods.

Inventory related costs are the components which are greatly influenced by pattern

selection as well.

Comparing the heuristics with each other, it is obvious that FO-II outperforms the other

two versions with an average gap of 0.56% which is the least among all.

For further evaluation of FO-II, 5 random instances are generated for each problem

setting. These instances differ in terms of demand value, store and seed point

coordinates. That is, in total, FO-II is tested on 40 instances and the average gaps and

solution times are presented in Table 3.7. As it is obvious, the percentage deviations

are under 2% which is a prove for efficiency of suggested method in terms of

producing quality solutions.

Table 3.8 demonstrates the solution durations for three heuristic versions. As we

previously mentioned, the problems are first solved by CPLEX within a time limit of

three hours and the best bounds and gaps from optimal solution is reported. As it is

obvious from Table 3.8, suggested heuristic methods are efficient in terms of

computational time since the average CPU times in second for all of them is under 3

72

hours. There is not any meaningful difference between solution times among three

heuristic versions but we can claim that FO-II performs better than the other two

methods. The largest computation time belongs to FO-I, which is due the fact that the

subproblem handling order and generation criteria directly affects the complexity of

each subproblem. Considering average solution times presented in Table 3.7, it is seen

that all of the problems are solved in a period under 3 hours which is the time limit we

set for the CPLEX. That is, FO-II is able to yield quality solutions n acceptable

durations.

Considering fleet composition, as it is presented in Table 3.9, there is a general pattern

being repeated. That is, in heuristic methods, the number of assigned vehicles are less

than the ones in CPLEX solution but the total costs are higher. Investigating cost

components and pattern-delivery day combinations, we found out that heuristics

generally prefer deliveries with smaller batches which results in less vehicle utilization

and more frequent replenishments. This replenishment schedule, reduces vehicle

ownership/rental cost and inventory holding costs but increases transportation costs

significantly.

Overall, we can claim that the proposed FO versions and improvement step are

efficient solution techniques in our problem case.

Table 3.6: Percentage deviations from best bounds for FO-I, FO-II and FO-III.

FO-I FO-II FO-III

1 2.93% 0.70% 3.03%

2 3.41% 0.87% 4.53%

3 0.98% 0.20% 4.13%

4 1.71% 0.21% 1.59%

5 0.76% 0.42% 0.87%

6 0.29% 0.94% 1.13%

7 0.59% 0.75% 0.86%

8 0.21% 0.38% 2.67%

Average 1.36% 0.56% 2.35%

73

Table 3.7: Average gaps and CPU (s) times for FO-II.

Average gaps Average CPU

1 0.70% 632.99

2 1.55% 840.24

3 0.51% 1060.99

4 0.58% 2742.49

5 0.46% 2228.59

6 1.20% 3047.9

7 1.06% 9719.82

8 0.55% 7849.91

Table 3.8: CPU times in seconds for FO-I, FO-II and FO-III.

FO-I FO-II FO-III

1 708.09 388.46 616.20

2 501.84 805.13 462.79

3 1704.38 858.31 2227.71

4 2262.84 3229.64 1456.04

5 4560.39 2516.61 6356.74

6 8277.98 3650.72 8059.22

7 8700.93 7378.76 3690.91

8 9120.68 7528.35 3502.99

Average 4479.64 3294.49 3296.58

Table 3.9: Fleet composition for CPLEX, FO-I, FO-II and FO-III.

CPLEX FO-I FO-II FO-III

V1 V2 R2 R2 V1 V2 R2 R2 V1 V2 R2 R2 V1 V2 R2 R2

1 2 0 0 0 3 0 0 0 3 0 0 0 3 0 0 0

2 3 0 0 0 3 0 0 0 3 0 0 0 3 0 0 0

3 4 1 0 0 3 0 0 0 4 1 0 0 4 0 0 0

4 5 1 0 0 4 1 0 0 4 0 0 0 5 0 0 0

5 7 1 1 1 5 0 1 0 5 0 0 0 5 0 0 0

74

6 6 2 1 1 5 0 1 0 4 0 0 1 5 0 0 0

7 7 3 1 1 9 0 0 0 7 0 0 0 9 0 0 0

8 7 3 1 0 9 1 0 0 7 0 0 0 8 0 0 0

3.8 Conclusion

In the second part of this thesis, we first developed a mixed integer programming

model for the integrated fleet sizing and replenishment planning problem with delivery

patterns. Empirical findings support the notion that the majority of grocery retailers

implement these delivery patterns, often customized according to their sales volumes

and the physical dimensions of their stores. Holzapfel et al. (2016) [24] highlight the

numerous advantages of employing recurring and store-specific delivery patterns in

retail logistics as simplified workforce scheduling, efficient transportation planning,

dynamic staff deployment, and streamlined inventory management. The choice of

delivery patterns exerts a substantial influence on the functioning of operational

components within an internal retail supply chain, including the distribution center

(DC), transportation, and in-store logistics. Effective utilization of vehicle fleets

significantly affects the profitability of companies that own or plan to rent fleets.

Consequently, addressing the strategic fleet sizing and composition problem emerges

as a critical logistical decision. This problem primarily aims to optimize a company's

profitability by determining the most suitable fleet size and composition. Unlike

detailed routing problems, which involve daily operational decisions, strategic fleet

management problems typically do not delve into routing intricacies at a highly

detailed level. As a result, our study approximates routing costs because detailed

routing decisions vary daily and constitute a relatively small percentage of the total

cost.

Next, a comprehensive examination of the results obtained from three distinct

variations of the FO heuristic, supplemented by an additional improvement step

applied to the existing problem settings is presented. The findings have been

systematically categorized and scrutinized across three key dimensions: percentage

deviations from the best bounds provided by CPLEX, computational time

requirements, and fleet composition. In the realm of comparative analysis, it becomes

75

evident that FO-II outperforms the other two versions, boasting an average gap of

merely 0.56%, the lowest among all.

To further evaluate the heuristic's performance, random instances were generated for

each problem setting, resulting in a comprehensive analysis based on 40 instances for

FO-II. The results consistently demonstrate percentage deviations under 2%, a

testament to the efficiency of the suggested method in delivering high-quality

solutions.

In terms of computational time, FO-II outperforms the other two versions. All of the

three versions solve the instances in a time less than 2 hours which indicates that they

beat the CPLEX from this aspect, as well.

In summary, the proposed FO heuristic variations, complemented by the additional

improvement step, have demonstrated their efficiency as solution techniques for the

addressed problem case. These findings underscore the potential for optimizing

delivery patterns, enhancing fleet sizing, and the importance of decision support

mechanisms across all subsystems in the retail industry.

76

77

4 CONTRIBUTION TO THE LITERATURE AND FUTURE RESEARCH

In this thesis, we consider an important logistical problem. A basic and extended

version of the mixed integer programming model is developed. The basic model aims

at making decisions about fleet size and replenishment schedules simultaneously while

tries to minimize the total annual cost of replenishing a set of geographically dispersed

customers using a single customer specific delivery frequency and vehicle type. In this

problem, all of the inventory related, routing related and fleet ownership related costs

are included. A significant simplification brought to the problem of consideration is

that the routing costs are handled in an approximate manner. Complexity of the

problem is analyzed and it is proved to be an NP- hard one according to its reduction

to one dimensional bin-packing problem. To solve the problem and bring quality

solutions two effective metaheuristic techniques are proposed, namely: ADP with an

improvement step and PSS. The effectiveness of the suggested methods is proved by

testing them on a set of semi real-life dataset.

The second section of the thesis, handles an extended version of the same problem,

where the delivery patterns are in a more generalized form, demand is exposed to

seasonality and rental fleet option is available. The decisions to be made here are:

1. assignment of stores to delivery patterns, delivery tours and vehicles

2. assignment of vehicles to delivery tours and delivery days

The chief objective of the problem in chapter II is to minimize the total amount of the

costs incurred by delivery pattern assignment, routing, vehicle ownership, using rental

vehicles and holding inventories. Routing costs are calculated based on an

approximation technique put forward by Fisher & Jaikumar (1981) [19]. The problem

is proved to be NP-hard and three versions of fix and optimize heuristic with an

additional improvement step are suggested. The results from FO implementation show

the efficiency of the proposed method both in terms of computational time and solution

quality. To sum up, we contribute to the literature by developing two mathematical

formulations and effective solution techniques for a key logistical problem.As future

work the following one can:

78

1. Propose different novel heuristics for the basic model

2. Develop the mathematical formulation for the case with stochastic demand and

propose efficient solution techniques

Develop a two-echelon system considering the policies of the distribution center and

generate efficient solution heuristics

79

REFERENCES

[1] Agrawal, N., & Smith, S. A., (2015). Retail supply chain management. Springer.

[2] Albrecht, A. R., Panton, D. M., & Lee, D. H., (2013). Rescheduling rail networks

with maintenance disruptions using problem space search. Computers &

Operations Research, 40(3), 703-712.

[3] Astaraky, D., & Patrick, J., (2015). A simulation based approximate dynamic

programming approach to multi-class, multi-resource surgical scheduling.

European Journal of Operational Research, 245(1), 309-319.

[4] Aziez, I., Côté, J.-F., & Coelho, L. C., (2022). Fleet sizing and routing of

healthcare automated guided vehicles. Transportation research part E:

logistics and transportation review, 161, 102679.

[5] Bellman, R., & Kalaba, R., (1957). Dynamic programming and statistical

communication theory. Proceedings of the National Academy of Sciences,

43(8), 749-751.

[6] Bertazzi, L., Paletta, G., & Speranza, M. G., (2005). Minimizing the total cost

in an integrated vendor—Managed inventory system. Journal of heuristics, 11,

393-419.

[7] Bertazzi, L., & Speranza, M. G., (1999). Inventory control on sequences of links

with given transportation frequencies. International Journal of Production

Economics, 59(1-3), 261-270.

[8] Bertazzi, L., Speranza, M. G., & Ukovich, W., (1997). Minimization of logistic

costs with given frequencies. Transportation research part B: Methodological,

31(4), 327-340.

[9] Bertazzi, L., Speranza, M. G., & Ukovich, W., (2000). Exact and heuristic

solutions for a shipment problem with given frequencies. Management

Science, 46(7), 973-988.

[10] Bertsimas, D., & Demir, R., (2002). An approximate dynamic programming

approach to multidimensional knapsack problems. Management Science,

48(4), 550-565.

[11] Cachon, G., (2001). Managing a retailer's shelf space, inventory, and

transportation. Manufacturing & Service Operations Management, 3(3), 211-

229.

[12] Cachon, G. P., (1999). Managing supply chain demand variability with

scheduled ordering policies. Management Science, 45(6), 843-856.

[13] Chen, H., (2015). Fix-and-optimize and variable neighborhood search

approaches for multi-level capacitated lot sizing problems. Omega, 56, 25-36.

80

[14] Dastjerd, N. K., & Ertogral, K., (2019). A fix-and-optimize heuristic for the

integrated fleet sizing and replenishment planning problem with predetermined

delivery frequencies. Computers & Industrial Engineering, 127, 778-787.

[15] Desrochers, M., & Verhoog, T., (1991). A new heuristic for the fleet size and

mix vehicle routing problem. Computers & Operations Research, 18(3), 263-

274.

[16] Dorneles, Á. P., De Araújo, O. C., & Buriol, L. S., (2014). A fix-and-optimize

heuristic for the high school timetabling problem. Computers & Operations

Research, 52, 29-38.

[17] Drechsel, J., & Kimms, A., (2011). Cooperative lot sizing with transshipments

and scarce capacities: solutions and fair cost allocations. International Journal

of Production Research, 49(9), 2643-2668.

[18] Federgruen, A., Meissner, J., & Tzur, M., (2007). Progressive interval

heuristics for multi-item capacitated lot-sizing problems. Operations Research,

55(3), 490-502.

[19] Fisher, M. L., & Jaikumar, R., (1981). A generalized assignment heuristic for

vehicle routing. Networks, 11(2), 109-124.

[20] Gaur, V., & Fisher, M. L., (2004). A periodic inventory routing problem at a

supermarket chain. Operations Research, 52(6), 813-822.

[21] Gintner, V., Kliewer, N., & Suhl, L., (2005). Solving large multiple-depot

multiple-vehicle-type bus scheduling problems in practice. Or Spectrum, 27,

507-523.

[22] Gören, H. G., & Tunalı, S., (2015). Solving the capacitated lot sizing problem

with setup carryover using a new sequential hybrid approach. Applied

Intelligence, 42, 805-816.

[23] Helber, S., & Sahling, F., (2010). A fix-and-optimize approach for the multi-

level capacitated lot sizing problem. International Journal of Production

Economics, 123(2), 247-256.

[24] Holzapfel, A., Hübner, A., Kuhn, H., & Sternbeck, M. G., (2016). Delivery

pattern and transportation planning in grocery retailing. European Journal of

Operational Research, 252(1), 54-68.

[25] Hua, Z., Zhang, B., & Liang, L., (2006). An approximate dynamic programming

approach to convex quadratic knapsack problems. Computers & Operations

Research, 33(3), 660-673.

[26] Hübner, A. H., Kuhn, H., & Sternbeck, M. G., (2013). Demand and supply

chain planning in grocery retail: an operations planning framework.

International Journal of Retail & Distribution Management, 41(7), 512-530.

[27] Hulshof, P. J., Mes, M. R., Boucherie, R. J., & Hans, E. W., (2016). Patient

admission planning using approximate dynamic programming. Flexible

services and manufacturing journal, 28, 30-61.

81

[28] Jeet, V., & Kutanoglu, E., (2007). Lagrangian relaxation guided problem space

search heuristics for generalized assignment problems. European Journal of

Operational Research, 182(3), 1039-1056.

[29] John, M., (1958). Production Planning and Inventory Control. Nova Iorque:

McGraw-Hill.

[30] Koç, Ç., Bektaş, T., Jabali, O., & Laporte, G., (2016). Thirty years of

heterogeneous vehicle routing. European Journal of Operational Research,

249(1), 1-21.

[31] Kuhn, H., & Sternbeck, M. G., (2013). Integrative retail logistics: An

exploratory study. Operations Management Research, 6(1), 2-18.

[32] Kuhn, H., & Sternbeck, M. G., (2013). Integrative retail logistics: An

exploratory study. Operations Management Research, 6, 2-18.

[33] Leon, V. J., & Ramamoorthy, B., (1997). An adaptable problem-space-based

search method for flexible flow line scheduling. IIE transactions, 29(2), 115-

125.

[34] Liu, S., Huang, W., & Ma, H., (2009). An effective genetic algorithm for the

fleet size and mix vehicle routing problems. Transportation research part E:

logistics and transportation review, 45(3), 434-445.

[35] Naphade, K. S., David Wu, S., & Storer, R. H., (1997). Problem space search

algorithms for resource-constrained project scheduling. Annals of operations

research, 70(0), 307-326.

[36] Neves-Moreira, F., Da Silva, D. P., Guimarães, L., Amorim, P., & Almada-

Lobo, B., (2018). The time window assignment vehicle routing problem with

product dependent deliveries. Transportation research part E: logistics and

transportation review, 116, 163-183.

[37] Perry, T. C., & Hartman, J. C., (2009). An approximate dynamic programming

approach to solving a dynamic, stochastic multiple knapsack problem.

International Transactions in Operational Research, 16(3), 347-359.

[38] Pochet, Y., & Wolsey, L. A., (2006). Production planning by mixed integer

programming (Vol. 149). Springer.

[39] Ronconi, D. P., & Powell, W. B., (2010). Minimizing total tardiness in a

stochastic single machine scheduling problem using approximate dynamic

programming. Journal of Scheduling, 13(6), 597-607.

[40] Ronen, D., & Goodhart, C., (2008). Tactical store delivery planning. Journal of

the operational research society, 59(8), 1047-1054.

[41] Savelsbergh, M., (1990). A parallel insertion heuristic for vehicle routing with

side constraints. Statistica Neerlandica, 44(3), 139-148.

[42] Sayarshad, H. R., & Ghoseiri, K., (2009). A simulated annealing approach for

the multi-periodic rail-car fleet sizing problem. Computers & Operations

Research, 36(6), 1789-1799.

[43] Schöneberg, T., Koberstein, A., & Suhl, L., (2010). An optimization model for

automated selection of economic and ecologic delivery profiles in area

82

forwarding based inbound logistics networks. Flexible services and

manufacturing journal, 22, 214-235.

[44] Silva, T. A., & de Souza, M. C., (2020). Surgical scheduling under uncertainty

by approximate dynamic programming. Omega, 95, 102066.

[45] Simao, H. P., Day, J., George, A. P., Gifford, T., Nienow, J., & Powell, W. B.,

(2009). An approximate dynamic programming algorithm for large-scale fleet

management: A case application. Transportation Science, 43(2), 178-197.

[46] Speranza, M., & Ukovich, W., (1996). An algorithm for optimal shipments with

given frequencies. Naval Research Logistics (NRL), 43(5), 655-671.

[47] Speranza, M. G., & Ukovich, W., (1994). Minimizing transportation and

inventory costs for several products on a single link. Operations Research,

42(5), 879-894.

[48] Sternbeck, M. G., & Kuhn, H., (2014). An integrative approach to determine

store delivery patterns in grocery retailing. Transportation research part E:

logistics and transportation review, 70, 205-224.

[49] Storer, R. H., Flanders, S. W., & David Wu, S., (1996). Problem space local

search for number partitioning. Annals of operations research, 63, 463-487.

[50] Storer, R. H., Wu, S. D., & Vaccari, R., (1992). New search spaces for

sequencing problems with application to job shop scheduling. Management

Science, 38(10), 1495-1509.

[51] Sun, L., Zhang, Y., & Hu, X., (2021). Economical-traveling-distance-based fleet

composition with fuel costs: An application in petrol distribution.

Transportation research part E: logistics and transportation review, 147,

102223.

[52] Taleizadeh, A. A., Shokr, I., Konstantaras, I., & VafaeiNejad, M., (2020).

Stock replenishment policies for a vendor-managed inventory in a retailing

system. Journal of Retailing and Consumer Services, 55, 102137.

[53] Tanksale, A., & Jha, J. K., (2020). A hybrid fix-and-optimize heuristic for

integrated inventory-transportation problem in a multi-region multi-facility

supply chain. RAIRO-Operations Research, 54(3), 749-782.

[54] Topaloglu, H., (2005). An approximate dynamic programming approach for a

product distribution problem. IIE transactions, 37(8), 697-710.

[55] Van Donselaar, K. H., Gaur, V., Van Woensel, T., Broekmeulen, R. A., &

Fransoo, J. C., (2010). Ordering behavior in retail stores and implications for

automated replenishment. Management Science, 56(5), 766-784.

[56] Van Zelst, S., Van Donselaar, K., Van Woensel, T., Broekmeulen, R., &

Fransoo, J., (2009). Logistics drivers for shelf stacking in grocery retail stores:

Potential for efficiency improvement. International Journal of Production

Economics, 121(2), 620-632.

[57] Żak, J., Redmer, A., & Sawicki, P., (2011). Multiple objective optimization of

the fleet sizing problem for road freight transportation. Journal of advanced

transportation, 45(4), 321-347.

83

PUBLISHMENTS, PATENTS AND PRESENTATIONS ADOPTED FROM

THESIS:

• N. D. Karimi, K. Ertogral, 2018. Strategic Fleet Sizing Problem in A Vendor

Managed Inventory System with Predetermined Delivery Frequencies; A Fix

and Optimize Heuristic, IISE Annual Conference, Orlando, USA.

• Niousha Karimi Dastjerd, Kadir Ertoğral, Eda Yücel, 2019. Entegre Filo

Büyüklüğü Belirleme Ve İkmal Planlama Problemi İçin Yaklaşık Dinamik

Programlama Sezgiseli, YAEM, Ankara, Turkey

• N. D. Karimi, K. Ertogral, 2022. Problem Space Search Heuristics Using Fix

and Optimize Approach for The Integrated Fleet Sizing and Replenishment

Planning Problem, The 12th Annual International Conference on Industrial

Engineering and Operations Management, Istanbul Turkey, March 7-10.

• D.Aghazade, K. Ertogral, 2022. An Improved Approximate Dynamic

Programming Method for the Integrated Fleet Sizing and Replenishment

Planning Problem with Predetermined Delivery Frequencies, 10th IFAC

Conference on Manufacturing Modelling, Management and Control, June 22-

24, Nantes, France

• Aghazadeh, D., Ertogral, K, 2022. An Improved Approximate Dynamic

Programming Method for the Integrated Fleet Sizing and Replenishment

Planning Problem with Predetermined Delivery Frequencies, IFAC-

PapersOnLine, 55(10), 3034-3039.

• Duygu Aghazadeh, Kadir Ertogral, 2023. Problem space search

metaheuristics with fix and optimize approach for the integrated fleet sizing

and replenishment planning problem. Journal of Industrial and Management

Optimization. doi: 10.3934/jimo.2023107

